{"title":"Hierarchical MnO2 nanosheets decorated on hollow co/N-doped carbon toward superior electromagnetic wave absorption","authors":"Chenhao Wei, Sihan Liu, Chenyu Wang, Zizhuang He, Panbo Liu, Mukun He, Junwei Gu","doi":"10.1016/j.mtnano.2025.100609","DOIUrl":null,"url":null,"abstract":"<div><div>Hierarchical construction and hetero-interfaces design are considered as the promising strategies in improving electromagnetic (EM) wave absorption intensity and broadening absorption bandwidth for metal-organic-frameworks (MOFs) derivatives, but still face challenges in regulating the profitable morphologies. Herein, a self-assembly strategy coupling with a subsequent hydrothermal process have been employed to fabricate hollow Co/N-doped carbon@MnO<sub>2</sub> (H-Co/NC@MnO<sub>2</sub>) composites with hierarchical microstructures and abundant hetero-interfaces. The results indicated that H-Co/NC is constructed by the accumulation of abundant MOFs derivatives without interactions, and the amount of KMnO<sub>4</sub> plays an important role in manipulating hierarchical MnO<sub>2</sub> nanosheets and optimizing EM wave absorption. Benefiting from the cooperative merits of hierarchical microstructures, multiple hetero-interfaces and the EM synergy, the maximum reflection loss of H-Co/NC@MnO<sub>2</sub> is as high as −60.2 dB at 3.7 mm and the absorption bandwidth achieves 8.6 GHz with a thickness of 4 mm. This study inspires us a new avenue to regulate the EM wave absorption of MOFs derivatives by hierarchical construction and hetero-interfaces design.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"30 ","pages":"Article 100609"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000409","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hierarchical construction and hetero-interfaces design are considered as the promising strategies in improving electromagnetic (EM) wave absorption intensity and broadening absorption bandwidth for metal-organic-frameworks (MOFs) derivatives, but still face challenges in regulating the profitable morphologies. Herein, a self-assembly strategy coupling with a subsequent hydrothermal process have been employed to fabricate hollow Co/N-doped carbon@MnO2 (H-Co/NC@MnO2) composites with hierarchical microstructures and abundant hetero-interfaces. The results indicated that H-Co/NC is constructed by the accumulation of abundant MOFs derivatives without interactions, and the amount of KMnO4 plays an important role in manipulating hierarchical MnO2 nanosheets and optimizing EM wave absorption. Benefiting from the cooperative merits of hierarchical microstructures, multiple hetero-interfaces and the EM synergy, the maximum reflection loss of H-Co/NC@MnO2 is as high as −60.2 dB at 3.7 mm and the absorption bandwidth achieves 8.6 GHz with a thickness of 4 mm. This study inspires us a new avenue to regulate the EM wave absorption of MOFs derivatives by hierarchical construction and hetero-interfaces design.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites