João Marcos do Ó , Justino Sánchez , Evelina Shamarova
{"title":"Existence, multiplicity and classification results for solutions to k-Hessian equations with general weights","authors":"João Marcos do Ó , Justino Sánchez , Evelina Shamarova","doi":"10.1016/j.jde.2025.02.085","DOIUrl":null,"url":null,"abstract":"<div><div>The present paper is concerned with negative classical solutions to a <em>k</em>-Hessian equation involving a nonlinearity with a general weight<span><span><span>(<em>P</em>)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>=</mo><mi>λ</mi><mi>ρ</mi><mo>(</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>)</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>u</mi><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msup></mtd><mtd><mtext>in </mtext><mspace></mspace><mspace></mspace><mi>B</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn></mtd><mtd><mtext>on </mtext><mo>∂</mo><mi>B</mi><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> Here, <em>B</em> denotes the unit ball in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mi>n</mi><mo>></mo><mn>2</mn><mi>k</mi></math></span>, <em>λ</em> is a positive parameter and <span><math><mi>q</mi><mo>></mo><mi>k</mi></math></span> with <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>. The function <span><math><mi>r</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>r</mi><mo>)</mo><mo>/</mo><mi>ρ</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span> satisfies very general conditions in the radial direction <span><math><mi>r</mi><mo>=</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></math></span>. We show the existence, nonexistence, and multiplicity of solutions to Problem <span><span>(<em>P</em>)</span></span>. The main technique used for the proofs is a phase-plane analysis related to a non-autonomous dynamical system associated to the equation in <span><span>(<em>P</em>)</span></span>. Further, using the aforementioned non-autonomous system, we give a comprehensive characterization of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-, <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-, <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-solutions to the related problem<span><span><span>(<span><math><mover><mrow><mi>P</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>w</mi><mo>)</mo><mo>=</mo><mi>ρ</mi><mo>(</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>)</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>w</mi><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>w</mi><mo><</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> given on the entire space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In particular, we describe new classes of solutions: fast decay <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-solutions and <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-solutions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"432 ","pages":"Article 113214"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625002104","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The present paper is concerned with negative classical solutions to a k-Hessian equation involving a nonlinearity with a general weight(P) Here, B denotes the unit ball in , , λ is a positive parameter and with . The function satisfies very general conditions in the radial direction . We show the existence, nonexistence, and multiplicity of solutions to Problem (P). The main technique used for the proofs is a phase-plane analysis related to a non-autonomous dynamical system associated to the equation in (P). Further, using the aforementioned non-autonomous system, we give a comprehensive characterization of -, -, -solutions to the related problem() given on the entire space . In particular, we describe new classes of solutions: fast decay -solutions and -solutions.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics