Existence, multiplicity and classification results for solutions to k-Hessian equations with general weights

IF 2.4 2区 数学 Q1 MATHEMATICS
João Marcos do Ó , Justino Sánchez , Evelina Shamarova
{"title":"Existence, multiplicity and classification results for solutions to k-Hessian equations with general weights","authors":"João Marcos do Ó ,&nbsp;Justino Sánchez ,&nbsp;Evelina Shamarova","doi":"10.1016/j.jde.2025.02.085","DOIUrl":null,"url":null,"abstract":"<div><div>The present paper is concerned with negative classical solutions to a <em>k</em>-Hessian equation involving a nonlinearity with a general weight<span><span><span>(<em>P</em>)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>=</mo><mi>λ</mi><mi>ρ</mi><mo>(</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>)</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>u</mi><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msup></mtd><mtd><mtext>in </mtext><mspace></mspace><mspace></mspace><mi>B</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn></mtd><mtd><mtext>on </mtext><mo>∂</mo><mi>B</mi><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> Here, <em>B</em> denotes the unit ball in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, <span><math><mi>n</mi><mo>&gt;</mo><mn>2</mn><mi>k</mi></math></span>, <em>λ</em> is a positive parameter and <span><math><mi>q</mi><mo>&gt;</mo><mi>k</mi></math></span> with <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>. The function <span><math><mi>r</mi><msup><mrow><mi>ρ</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>r</mi><mo>)</mo><mo>/</mo><mi>ρ</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span> satisfies very general conditions in the radial direction <span><math><mi>r</mi><mo>=</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></math></span>. We show the existence, nonexistence, and multiplicity of solutions to Problem <span><span>(<em>P</em>)</span></span>. The main technique used for the proofs is a phase-plane analysis related to a non-autonomous dynamical system associated to the equation in <span><span>(<em>P</em>)</span></span>. Further, using the aforementioned non-autonomous system, we give a comprehensive characterization of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-, <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-, <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-solutions to the related problem<span><span><span>(<span><math><mover><mrow><mi>P</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span>)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>w</mi><mo>)</mo><mo>=</mo><mi>ρ</mi><mo>(</mo><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mo>)</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>w</mi><mo>)</mo></mrow><mrow><mi>q</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>w</mi><mo>&lt;</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> given on the entire space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In particular, we describe new classes of solutions: fast decay <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-solutions and <span><math><msubsup><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow><mrow><mo>+</mo></mrow></msubsup></math></span>-solutions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"432 ","pages":"Article 113214"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625002104","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper is concerned with negative classical solutions to a k-Hessian equation involving a nonlinearity with a general weight(P){Sk(D2u)=λρ(|x|)(1u)qin B,u=0on B. Here, B denotes the unit ball in Rn, n>2k, λ is a positive parameter and q>k with kN. The function rρ(r)/ρ(r) satisfies very general conditions in the radial direction r=|x|. We show the existence, nonexistence, and multiplicity of solutions to Problem (P). The main technique used for the proofs is a phase-plane analysis related to a non-autonomous dynamical system associated to the equation in (P). Further, using the aforementioned non-autonomous system, we give a comprehensive characterization of P2-, P3+-, P4+-solutions to the related problem(Pˆ){Sk(D2w)=ρ(|x|)(w)q,w<0, given on the entire space Rn. In particular, we describe new classes of solutions: fast decay P3+-solutions and P4+-solutions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信