Jordan W. Crowell , K. Christopher Beard , Stephen G.B. Chester
{"title":"Micro-computed tomography unveils anatomy of the oldest known plesiadapiform cranium","authors":"Jordan W. Crowell , K. Christopher Beard , Stephen G.B. Chester","doi":"10.1016/j.jhevol.2025.103655","DOIUrl":null,"url":null,"abstract":"<div><div>Palaechthonids are a likely paraphyletic or polyphyletic assemblage of dentally plesiomorphic plesiadapiforms known from the Paleocene of North America. This family is known primarily from isolated dental fossils, but one partial cranium of the palaechthonid <em>Plesiolestes nacimienti</em> (Division of Vertebrate Paleontology, Biodiversity Institute, University of Kansas [KUVP] 9557) exists and was studied a half-century ago to infer aspects of the paleobiology of basal or stem primates. Since then, additional plesiadapiform crania representing several families have been described, but KUVP 9557 remains the best preserved for a palaechthonid and is the geologically oldest known cranial fossil of any plesiadapiform or euarchontan mammal (primates + colugos + treeshrews). Here, for the first time, we scanned the partial cranium of <em>P. nacimienti</em> using micro-computed tomography (μCT) to assess previously described morphology, document novel morphology, and make comparisons with crania of other plesiadapiforms and euarchontans. While several previous cranial descriptions are reaffirmed here (e.g., caudal expansion of the nasals, an intraorbital lacrimal foramen), μCT scan data have clarified that certain previously identified structures (e.g., postorbital process) are not present and have unveiled previously unknown structures (e.g., foramen ovale, optic foramen). Comparisons indicate that the cranial anatomy of <em>P. nacimienti</em> is most like that of non-microsyopid plesiadapiforms and that unambiguous synapomorphies with an extant euarchontan clade are absent. Paleobiological inferences presented here suggest that <em>P. nacimienti</em> was broadly similar to the extant treeshrew <em>Ptilocercus</em>, albeit less insectivorous, which is in line with evolutionary scenarios proposed for the ancestral primatomorphan or the ancestral primate (sensu lato) that emphasize the importance of arboreality and angiosperm products.</div></div>","PeriodicalId":54805,"journal":{"name":"Journal of Human Evolution","volume":"201 ","pages":"Article 103655"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Evolution","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047248425000089","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Palaechthonids are a likely paraphyletic or polyphyletic assemblage of dentally plesiomorphic plesiadapiforms known from the Paleocene of North America. This family is known primarily from isolated dental fossils, but one partial cranium of the palaechthonid Plesiolestes nacimienti (Division of Vertebrate Paleontology, Biodiversity Institute, University of Kansas [KUVP] 9557) exists and was studied a half-century ago to infer aspects of the paleobiology of basal or stem primates. Since then, additional plesiadapiform crania representing several families have been described, but KUVP 9557 remains the best preserved for a palaechthonid and is the geologically oldest known cranial fossil of any plesiadapiform or euarchontan mammal (primates + colugos + treeshrews). Here, for the first time, we scanned the partial cranium of P. nacimienti using micro-computed tomography (μCT) to assess previously described morphology, document novel morphology, and make comparisons with crania of other plesiadapiforms and euarchontans. While several previous cranial descriptions are reaffirmed here (e.g., caudal expansion of the nasals, an intraorbital lacrimal foramen), μCT scan data have clarified that certain previously identified structures (e.g., postorbital process) are not present and have unveiled previously unknown structures (e.g., foramen ovale, optic foramen). Comparisons indicate that the cranial anatomy of P. nacimienti is most like that of non-microsyopid plesiadapiforms and that unambiguous synapomorphies with an extant euarchontan clade are absent. Paleobiological inferences presented here suggest that P. nacimienti was broadly similar to the extant treeshrew Ptilocercus, albeit less insectivorous, which is in line with evolutionary scenarios proposed for the ancestral primatomorphan or the ancestral primate (sensu lato) that emphasize the importance of arboreality and angiosperm products.
期刊介绍:
The Journal of Human Evolution concentrates on publishing the highest quality papers covering all aspects of human evolution. The central focus is aimed jointly at paleoanthropological work, covering human and primate fossils, and at comparative studies of living species, including both morphological and molecular evidence. These include descriptions of new discoveries, interpretative analyses of new and previously described material, and assessments of the phylogeny and paleobiology of primate species. Submissions should address issues and questions of broad interest in paleoanthropology.