Role of phosphate modification in enhancing ovalbumin fibril formation and functionality: Insights into molecular interactions and structural dynamics

IF 6.3 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Yu Xun , Zhouyi Xiong , Yongtian Song , Yuqaing Zhao , Hanguo Xiong
{"title":"Role of phosphate modification in enhancing ovalbumin fibril formation and functionality: Insights into molecular interactions and structural dynamics","authors":"Yu Xun ,&nbsp;Zhouyi Xiong ,&nbsp;Yongtian Song ,&nbsp;Yuqaing Zhao ,&nbsp;Hanguo Xiong","doi":"10.1016/j.ifset.2025.103992","DOIUrl":null,"url":null,"abstract":"<div><div>Amyloid fibrils from proteins have garnered significant attention from researchers due to their outstanding functional properties. This study aims to in<em>v</em>estigate the effects of different sodium tripolyphosphate (STPP) concentrations (0.4 %, 4.0 %, and 8.0 %, <em>w</em>/<em>v</em>) on the formation and functional properties of ovalbumin (OVA) amyloid fibrils under heating conditions. Thioflavin T (ThT) assay revealed that the addition of STPP significantly accelerated the fibril formation potential. The fibril formation mechanism was explored through circular dichroism (CD), hydrophobic interaction, zeta potential, and Fourier transform infrared (FTIR) spectral analyses. Hydrophobic interactions and electrostatic repulsion were found to be the main driving forces for fibril formation of STPP-modified OVA (POVA). TEM results showed that STPP concentration was the key factor for regulating the morphology of OVA fibrils, with filamentous and worm-like fibrils for 0.4 % and 4.0 % POVA, respectively, while aggregated fibrils for 8.0 % POVA, due to the decrease of hydrophobic interaction and electrostatic repulsion. The 4.0 % POVA fibrils had the best emulsification capacity and foaming properties. The emulsion stabilized with 4.0 % POVA was the most stable. Overall, this study elucidated the potential formation mechanism of POVA fibrils, providing an environmentally friendly idea for preparation of OVA fibrils. Meanwhile, it had great potential as delivery systems for food constituents.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"102 ","pages":"Article 103992"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856425000761","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Amyloid fibrils from proteins have garnered significant attention from researchers due to their outstanding functional properties. This study aims to investigate the effects of different sodium tripolyphosphate (STPP) concentrations (0.4 %, 4.0 %, and 8.0 %, w/v) on the formation and functional properties of ovalbumin (OVA) amyloid fibrils under heating conditions. Thioflavin T (ThT) assay revealed that the addition of STPP significantly accelerated the fibril formation potential. The fibril formation mechanism was explored through circular dichroism (CD), hydrophobic interaction, zeta potential, and Fourier transform infrared (FTIR) spectral analyses. Hydrophobic interactions and electrostatic repulsion were found to be the main driving forces for fibril formation of STPP-modified OVA (POVA). TEM results showed that STPP concentration was the key factor for regulating the morphology of OVA fibrils, with filamentous and worm-like fibrils for 0.4 % and 4.0 % POVA, respectively, while aggregated fibrils for 8.0 % POVA, due to the decrease of hydrophobic interaction and electrostatic repulsion. The 4.0 % POVA fibrils had the best emulsification capacity and foaming properties. The emulsion stabilized with 4.0 % POVA was the most stable. Overall, this study elucidated the potential formation mechanism of POVA fibrils, providing an environmentally friendly idea for preparation of OVA fibrils. Meanwhile, it had great potential as delivery systems for food constituents.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
6.10%
发文量
259
审稿时长
25 days
期刊介绍: Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信