Can large language models effectively reason about adverse weather conditions?

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nima Zafarmomen , Vidya Samadi
{"title":"Can large language models effectively reason about adverse weather conditions?","authors":"Nima Zafarmomen ,&nbsp;Vidya Samadi","doi":"10.1016/j.envsoft.2025.106421","DOIUrl":null,"url":null,"abstract":"<div><div>This paper seeks to answer the question “can Large Language Models (LLMs) effectively reason about adverse weather conditions?”. To address this question, we utilized multiple LLMs to harness the US National Weather Service (NWS) flood report data spanning from June 2005 to September 2024. Bidirectional and Auto-Regressive Transformer (BART), Bidirectional Encoder Representations from Transformers (BERT), Large Language Model Meta AI (LLaMA-2), LLaMA-3, and LLaMA-3.1 were employed to categorize data based on predefined labels. The methodology was implemented in Charleston County, South Carolina, USA. Extreme events were unevenly distributed across the training period with the “Cyclonic” category exhibiting significantly fewer instances compared to the “Flood” and “Thunderstorm” categories. Analysis suggests that the LLaMA-3 reached its peak performance at 60% of the dataset size while other LLMs achieved peak performance at approximately 80–100% of the dataset size. This study provided deep insights into the application of LLMs in reasoning adverse weather conditions.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"188 ","pages":"Article 106421"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001057","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper seeks to answer the question “can Large Language Models (LLMs) effectively reason about adverse weather conditions?”. To address this question, we utilized multiple LLMs to harness the US National Weather Service (NWS) flood report data spanning from June 2005 to September 2024. Bidirectional and Auto-Regressive Transformer (BART), Bidirectional Encoder Representations from Transformers (BERT), Large Language Model Meta AI (LLaMA-2), LLaMA-3, and LLaMA-3.1 were employed to categorize data based on predefined labels. The methodology was implemented in Charleston County, South Carolina, USA. Extreme events were unevenly distributed across the training period with the “Cyclonic” category exhibiting significantly fewer instances compared to the “Flood” and “Thunderstorm” categories. Analysis suggests that the LLaMA-3 reached its peak performance at 60% of the dataset size while other LLMs achieved peak performance at approximately 80–100% of the dataset size. This study provided deep insights into the application of LLMs in reasoning adverse weather conditions.
大型语言模型能有效地推断出恶劣的天气条件吗?
本文试图回答“大型语言模型(llm)能否有效地推理恶劣天气条件?”这个问题。为了解决这个问题,我们利用多个llm来利用美国国家气象局(NWS)从2005年6月到2024年9月的洪水报告数据。采用双向自回归变压器(BART)、双向编码器表示转换器(BERT)、大型语言模型元AI (LLaMA-2)、LLaMA-3和LLaMA-3.1基于预定义标签对数据进行分类。该方法在美国南卡罗来纳州查尔斯顿县实施。在整个训练期间,极端事件的分布不均匀,“气旋”类别与“洪水”和“雷暴”类别相比,出现的极端事件明显较少。分析表明,LLaMA-3在数据集大小的60%时达到其峰值性能,而其他llm在数据集大小的80-100%时达到峰值性能。这项研究为法学硕士在恶劣天气条件推理中的应用提供了深刻的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信