Origami-inspired self-sensing foldable composite structures: Experiments and modeling

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Israr Ud Din , Adnan Ahmed , Kamran A. Khan
{"title":"Origami-inspired self-sensing foldable composite structures: Experiments and modeling","authors":"Israr Ud Din ,&nbsp;Adnan Ahmed ,&nbsp;Kamran A. Khan","doi":"10.1016/j.jcomc.2025.100583","DOIUrl":null,"url":null,"abstract":"<div><div>Origami-inspired self-sensing foldable structures made from fiber-reinforced polymer composites (FRPCs) can be created using piezoresistive fabric laminates. These foldable structures enable real-time monitoring of the state of folds throughout the folding and unfolding processes. This study develops a simplified finite element (FE) modeling framework to predict the piezoresistive-mechanical response of the origami-inspired foldable structures. The model, implemented via UMATHT in ABAQUS®, leverages the analogy between electrical conduction and steady-state heat conduction. The piezoresistive-mechanical response of a simple folding hinge was predicted using the model and compared with the electromechanical folding experimental results. For this purpose, the hinge was manufactured by embedding rGO-coated fabric as a substrate for prepreg patches, which were consolidated using hot compression molding with varying sizes of the folding regions (3, 6, 9, and 12 mm). The folding tests revealed that the moment (M) and curvature (k) during bending depend on the fold region size (b), which in turn affects piezoresistivity, quantified as the fractional change in resistance (FCR). An inverse relationship was observed between moment, curvature, and piezoresistivity as the fold region size varied. Finally, the model was applied to predict piezoresistivity in two structures: a waterbomb base structure and an auxetic structure. We concluded that this modeling framework can be effectively used to predict the electromechanical response of full-scale foldable structures, calibrated with the experimental results of a simple folding hinge with a specific folding size.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"17 ","pages":"Article 100583"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Origami-inspired self-sensing foldable structures made from fiber-reinforced polymer composites (FRPCs) can be created using piezoresistive fabric laminates. These foldable structures enable real-time monitoring of the state of folds throughout the folding and unfolding processes. This study develops a simplified finite element (FE) modeling framework to predict the piezoresistive-mechanical response of the origami-inspired foldable structures. The model, implemented via UMATHT in ABAQUS®, leverages the analogy between electrical conduction and steady-state heat conduction. The piezoresistive-mechanical response of a simple folding hinge was predicted using the model and compared with the electromechanical folding experimental results. For this purpose, the hinge was manufactured by embedding rGO-coated fabric as a substrate for prepreg patches, which were consolidated using hot compression molding with varying sizes of the folding regions (3, 6, 9, and 12 mm). The folding tests revealed that the moment (M) and curvature (k) during bending depend on the fold region size (b), which in turn affects piezoresistivity, quantified as the fractional change in resistance (FCR). An inverse relationship was observed between moment, curvature, and piezoresistivity as the fold region size varied. Finally, the model was applied to predict piezoresistivity in two structures: a waterbomb base structure and an auxetic structure. We concluded that this modeling framework can be effectively used to predict the electromechanical response of full-scale foldable structures, calibrated with the experimental results of a simple folding hinge with a specific folding size.

Abstract Image

折纸启发的自感知可折叠复合结构:实验和建模
由纤维增强聚合物复合材料(frpc)制成的折纸式自传感可折叠结构可以使用压阻织物层压板制成。这些可折叠结构可以在折叠和展开过程中实时监测折叠状态。本研究开发了一个简化的有限元(FE)建模框架来预测折纸启发的可折叠结构的压阻力学响应。该模型通过ABAQUS®中的UMATHT实现,利用了电导和稳态热传导之间的类比。利用该模型对简单折叠铰链的压阻力学响应进行了预测,并与机电折叠实验结果进行了比较。为此,通过嵌入rgo涂层织物作为预浸料贴片的基板来制造铰链,预浸料贴片使用不同尺寸的折叠区域(3,6,9和12mm)进行热压缩成型。折叠测试表明,弯曲过程中的力矩(M)和曲率(k)取决于折叠区域的大小(b),这反过来影响压阻率,量化为电阻的分数变化(FCR)。随着褶皱区域大小的变化,观察到力矩、曲率和压阻率之间呈反比关系。最后,将该模型应用于水弹基结构和氧源结构两种结构的压电阻率预测。结果表明,该模型框架可以有效地用于预测全尺寸可折叠结构的机电响应,并与具有特定折叠尺寸的简单折叠铰链的实验结果进行校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信