Konjac glucomannan-based films and coatings for food packaging: Advances, applications, and future perspectives

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Si Shi , Hongyan Huang , Lihui Duan , Xianyang Xie , Jianxi Zhang , Junjie Tang , Wenhao Liu , Cailing Tong , Jie Pang , Chunhua Wu
{"title":"Konjac glucomannan-based films and coatings for food packaging: Advances, applications, and future perspectives","authors":"Si Shi ,&nbsp;Hongyan Huang ,&nbsp;Lihui Duan ,&nbsp;Xianyang Xie ,&nbsp;Jianxi Zhang ,&nbsp;Junjie Tang ,&nbsp;Wenhao Liu ,&nbsp;Cailing Tong ,&nbsp;Jie Pang ,&nbsp;Chunhua Wu","doi":"10.1016/j.carbpol.2025.123474","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Conventional petroleum-derived plastic food packaging poses risks to human health and environmental sustainability, while underperforming in preserving freshness and extending shelf life. This has spurred interest in biopolymers as sustainable alternatives. Konjac glucomannan (KGM), a natural biopolymer, stands out for its non-toxicity, film-forming ability, biodegradability, and biocompatibility, offering a sustainable solution to overcome conventional plastics' limitations.</div></div><div><h3>Scope and approach</h3><div>This review explores KGM's sources, production technologies, properties, and applications in food packaging. A literature search (2020–2025) using PubMed, Web of Science, and Scopus focused on peer-reviewed studies relevant to KGM-based films. Results show that KGM films enhance shelf life of perishable foods (e.g., fruits, vegetables, meats) by improving moisture retention, gas barriers, and antimicrobial activity.</div></div><div><h3>Conclusion</h3><div>Despite advantages, KGM films face challenges like mechanical strength limitations and humidity sensitivity. Strategies such as blending with biopolymers and incorporating nanoparticles improve performance. KGM-based packaging is emerging as an eco-friendly alternative to petroleum plastics, aligning with sustainability goals. Future research should optimize production processes and commercial scalability.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"357 ","pages":"Article 123474"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725002553","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Conventional petroleum-derived plastic food packaging poses risks to human health and environmental sustainability, while underperforming in preserving freshness and extending shelf life. This has spurred interest in biopolymers as sustainable alternatives. Konjac glucomannan (KGM), a natural biopolymer, stands out for its non-toxicity, film-forming ability, biodegradability, and biocompatibility, offering a sustainable solution to overcome conventional plastics' limitations.

Scope and approach

This review explores KGM's sources, production technologies, properties, and applications in food packaging. A literature search (2020–2025) using PubMed, Web of Science, and Scopus focused on peer-reviewed studies relevant to KGM-based films. Results show that KGM films enhance shelf life of perishable foods (e.g., fruits, vegetables, meats) by improving moisture retention, gas barriers, and antimicrobial activity.

Conclusion

Despite advantages, KGM films face challenges like mechanical strength limitations and humidity sensitivity. Strategies such as blending with biopolymers and incorporating nanoparticles improve performance. KGM-based packaging is emerging as an eco-friendly alternative to petroleum plastics, aligning with sustainability goals. Future research should optimize production processes and commercial scalability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信