Zn supported on composite materials as catalysts for fine chemical applications

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL
Luis Fernando Valencia , Isabel Agudelo , Juan Badano , Mónica Quiroga , Carolina Betti , Cecilia Lederhos , Aída Luz Villa
{"title":"Zn supported on composite materials as catalysts for fine chemical applications","authors":"Luis Fernando Valencia ,&nbsp;Isabel Agudelo ,&nbsp;Juan Badano ,&nbsp;Mónica Quiroga ,&nbsp;Carolina Betti ,&nbsp;Cecilia Lederhos ,&nbsp;Aída Luz Villa","doi":"10.1016/j.mcat.2025.115012","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, zinc supported composite catalysts were evaluated in the isomerization of β-pinene epoxide, limonene oxidation, and one pot synthesis of campholenic aldehyde from α-pinene. The composites materials were synthesized using CaCO<sub>3</sub> and a mixture of aluminium and magnesium sources as the inorganic phases and the bisphenol A glycerolate dimethacrylate / triethylene glycol dimethacrylate polymerized mixture as the polymeric organic phases. The materials were characterized by NH<sub>3</sub>-TPD, CO<sub>2</sub>-TPD, XRD, Py-FTIR, XPS, ICP, TEM and SEM-EDX. Mainly Lewis acid sites were identified by Py-FTIR analysis of BTAlMg and Zn-BTAlMg. The basicity of BTCa and Zn-BTCa materials was identified by CO<sub>2</sub>-TPD. Over Zn-BTCa, α-pinene conversion of 73 % and campholenic aldehyde selectivity of 90 % were obtained. The oxidation of limonene over Zn-BTCa yielded a conversion of 36 % with a selectivity of 92 % and 8 % towards 1,2-limonene epoxide and 8,9-limonene epoxide, respectively. The isomerization of β-pinene epoxide over Zn-BTAlMg with dimethyl carbonate, gave 89 % β-pinene epoxide conversion and 100 % selectivity to myrtanal. The synthesized catalysts did not show leaching under tested catalytic reactions. After four reuses, the product selectivity did not significantly changed and the conversion decreased 7 % and 11 % in the oxidation of α-pinene and isomerization of β-pinene epoxide, respectively.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"578 ","pages":"Article 115012"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823125001981","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, zinc supported composite catalysts were evaluated in the isomerization of β-pinene epoxide, limonene oxidation, and one pot synthesis of campholenic aldehyde from α-pinene. The composites materials were synthesized using CaCO3 and a mixture of aluminium and magnesium sources as the inorganic phases and the bisphenol A glycerolate dimethacrylate / triethylene glycol dimethacrylate polymerized mixture as the polymeric organic phases. The materials were characterized by NH3-TPD, CO2-TPD, XRD, Py-FTIR, XPS, ICP, TEM and SEM-EDX. Mainly Lewis acid sites were identified by Py-FTIR analysis of BTAlMg and Zn-BTAlMg. The basicity of BTCa and Zn-BTCa materials was identified by CO2-TPD. Over Zn-BTCa, α-pinene conversion of 73 % and campholenic aldehyde selectivity of 90 % were obtained. The oxidation of limonene over Zn-BTCa yielded a conversion of 36 % with a selectivity of 92 % and 8 % towards 1,2-limonene epoxide and 8,9-limonene epoxide, respectively. The isomerization of β-pinene epoxide over Zn-BTAlMg with dimethyl carbonate, gave 89 % β-pinene epoxide conversion and 100 % selectivity to myrtanal. The synthesized catalysts did not show leaching under tested catalytic reactions. After four reuses, the product selectivity did not significantly changed and the conversion decreased 7 % and 11 % in the oxidation of α-pinene and isomerization of β-pinene epoxide, respectively.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信