{"title":"Synchronous application of DIC and DVC techniques for the global-local characterization of carbon fiber-reinforced composite laminates","authors":"Chaeyoung Hong , Minsu Park, Wooseok Ji","doi":"10.1016/j.polymertesting.2025.108757","DOIUrl":null,"url":null,"abstract":"<div><div>DIC is capable of continuously measuring the global deformation behavior of a specimen because its scanning can be done quickly over a wider observation area. While the DIC information is limited to the surface on which a speckle pattern is applied, DVC can compute three-dimensional strain fields inside a material. However, DVC data can be obtained over a smaller region at a limited number of load levels. Here, the DIC and DVC techniques are simultaneously utilized for the first time. The previous <em>in situ</em> test setup of the authors based on synchrotron radiation computed tomography was modified to add the DIC capability. The <em>in situ</em> testbed was installed with a CCD camera with blue lighting to obtain images for DIC analysis. The opaque tubular frame of a micro-tensile stage was newly fabricated with a transparent material causing minimal optical distortion. The qualities of speckle pattern images obtained through the transparent tube were carefully evaluated. The combination of the DVC and DIC techniques was demonstrated with an open-hole tensile test. The global and local failure progression of the composite was non-destructively characterized. Especially, a load-displacement curve without machine compliance was obtained because the deformation of the specimen could be directly measured owing to the DIC technique. The resolutions of DVC and DIC in the presented study were 0.65 μm and 2.27 μm, respectively. This specification is expected to provide unprecedented results that can truly validate multi-scale simulation models.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"145 ","pages":"Article 108757"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825000716","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
DIC is capable of continuously measuring the global deformation behavior of a specimen because its scanning can be done quickly over a wider observation area. While the DIC information is limited to the surface on which a speckle pattern is applied, DVC can compute three-dimensional strain fields inside a material. However, DVC data can be obtained over a smaller region at a limited number of load levels. Here, the DIC and DVC techniques are simultaneously utilized for the first time. The previous in situ test setup of the authors based on synchrotron radiation computed tomography was modified to add the DIC capability. The in situ testbed was installed with a CCD camera with blue lighting to obtain images for DIC analysis. The opaque tubular frame of a micro-tensile stage was newly fabricated with a transparent material causing minimal optical distortion. The qualities of speckle pattern images obtained through the transparent tube were carefully evaluated. The combination of the DVC and DIC techniques was demonstrated with an open-hole tensile test. The global and local failure progression of the composite was non-destructively characterized. Especially, a load-displacement curve without machine compliance was obtained because the deformation of the specimen could be directly measured owing to the DIC technique. The resolutions of DVC and DIC in the presented study were 0.65 μm and 2.27 μm, respectively. This specification is expected to provide unprecedented results that can truly validate multi-scale simulation models.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.