Elisa Panero , Stefano Pastorelli , Laura Gastaldi
{"title":"Kinematic effects of a back-assistance exoskeleton during human locomotion","authors":"Elisa Panero , Stefano Pastorelli , Laura Gastaldi","doi":"10.1016/j.apergo.2025.104502","DOIUrl":null,"url":null,"abstract":"<div><div>In the last years, Industry 5.0 has proposed a sustainable and resilient industry model, where the human-centric approach places human needs at the center of the production process. Wearable robots have been designed to assist users, providing support for the entire body or specific regions during task performance. Ergonomic investigations are necessary to test the effects, advantages and possible drawbacks of occupational wearable devices. The present study focuses on the biomechanics of locomotion while wearing the Laevo V2.5 exoskeleton. Experimental tests involved twelve healthy volunteers. Spatio-temporal parameters, human 3D kinematics and exoskeleton 3D kinematics were compared in three settings (without exoskeleton, wearing the exoskeleton without and with passive support). These comparisons aimed to quantify the effects and the possible restrictions on user kinematics due to the interaction with the exoskeleton. Results highlighted a significant reduction in the gait speed (1.14 m/s no-exo, 1.07 m/s exo-no-support, 1.05 m/s exo-with-support) and the stride length (1.29 m no-exo, 1.24 m exo-no-support, 1.23 m exo-with-support) when wearing the exoskeleton. Human angular kinematics showed significant reductions in the range of motion for all joints when wearing the exoskeleton. However, results pointed out no significant differences between the no-support and support configurations, indicating that the primary effect is due to the exoskeleton structure rather than the support provided. Further assessment is essential to determine whether these changes in human kinematics align with ergonomic standards and reflect user adaptation, or if they fulfill acceptable limits, potentially leading to long-term negative effects.</div></div>","PeriodicalId":55502,"journal":{"name":"Applied Ergonomics","volume":"126 ","pages":"Article 104502"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ergonomics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003687025000389","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the last years, Industry 5.0 has proposed a sustainable and resilient industry model, where the human-centric approach places human needs at the center of the production process. Wearable robots have been designed to assist users, providing support for the entire body or specific regions during task performance. Ergonomic investigations are necessary to test the effects, advantages and possible drawbacks of occupational wearable devices. The present study focuses on the biomechanics of locomotion while wearing the Laevo V2.5 exoskeleton. Experimental tests involved twelve healthy volunteers. Spatio-temporal parameters, human 3D kinematics and exoskeleton 3D kinematics were compared in three settings (without exoskeleton, wearing the exoskeleton without and with passive support). These comparisons aimed to quantify the effects and the possible restrictions on user kinematics due to the interaction with the exoskeleton. Results highlighted a significant reduction in the gait speed (1.14 m/s no-exo, 1.07 m/s exo-no-support, 1.05 m/s exo-with-support) and the stride length (1.29 m no-exo, 1.24 m exo-no-support, 1.23 m exo-with-support) when wearing the exoskeleton. Human angular kinematics showed significant reductions in the range of motion for all joints when wearing the exoskeleton. However, results pointed out no significant differences between the no-support and support configurations, indicating that the primary effect is due to the exoskeleton structure rather than the support provided. Further assessment is essential to determine whether these changes in human kinematics align with ergonomic standards and reflect user adaptation, or if they fulfill acceptable limits, potentially leading to long-term negative effects.
期刊介绍:
Applied Ergonomics is aimed at ergonomists and all those interested in applying ergonomics/human factors in the design, planning and management of technical and social systems at work or leisure. Readership is truly international with subscribers in over 50 countries. Professionals for whom Applied Ergonomics is of interest include: ergonomists, designers, industrial engineers, health and safety specialists, systems engineers, design engineers, organizational psychologists, occupational health specialists and human-computer interaction specialists.