Wenhao Zhang , Dongmei Zhuang , Wenzhuo Wei , Yuchen Yang , Lijun Ma , He Du , Anran Jin , Jingyi He , Xiaoming Li
{"title":"The 100 most-cited radiomics articles in cancer research: A bibliometric analysis","authors":"Wenhao Zhang , Dongmei Zhuang , Wenzhuo Wei , Yuchen Yang , Lijun Ma , He Du , Anran Jin , Jingyi He , Xiaoming Li","doi":"10.1016/j.clinimag.2025.110442","DOIUrl":null,"url":null,"abstract":"<div><div>Radiomics, an advanced medical imaging analysis technique introduced by Professor Lambin in 2012, has quickly become a key area of medical research. To explore emerging trends in cancer-related radiomics, we conducted a bibliometric analysis of the 100 most-cited articles (T100) in this field. Data were collected from the Web of Science Core Collection on October 7, 2023, and the articles were ranked by citation count. We extracted data such as authors, journals, citation counts, and publication years and analyzed it using Microsoft Excel 2019 and R 4.4.2. CiteSpace was used to create co-occurrence and citation burst maps to show the relationships between authors, countries, institutions, and keywords. The analysis revealed that the T100 came from 81 countries, with the U.S. contributing the most (56 articles). Harvard University was the leading institution, and the journal <em>Radiology</em> had the highest citation count. Aerts Hugo JWL was the most influential author. The study highlights that “lung cancer” and “artificial intelligence” are emerging as major research hotspots, shaping the future of cancer radiomics.</div></div>","PeriodicalId":50680,"journal":{"name":"Clinical Imaging","volume":"121 ","pages":"Article 110442"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0899707125000427","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Radiomics, an advanced medical imaging analysis technique introduced by Professor Lambin in 2012, has quickly become a key area of medical research. To explore emerging trends in cancer-related radiomics, we conducted a bibliometric analysis of the 100 most-cited articles (T100) in this field. Data were collected from the Web of Science Core Collection on October 7, 2023, and the articles were ranked by citation count. We extracted data such as authors, journals, citation counts, and publication years and analyzed it using Microsoft Excel 2019 and R 4.4.2. CiteSpace was used to create co-occurrence and citation burst maps to show the relationships between authors, countries, institutions, and keywords. The analysis revealed that the T100 came from 81 countries, with the U.S. contributing the most (56 articles). Harvard University was the leading institution, and the journal Radiology had the highest citation count. Aerts Hugo JWL was the most influential author. The study highlights that “lung cancer” and “artificial intelligence” are emerging as major research hotspots, shaping the future of cancer radiomics.
期刊介绍:
The mission of Clinical Imaging is to publish, in a timely manner, the very best radiology research from the United States and around the world with special attention to the impact of medical imaging on patient care. The journal''s publications cover all imaging modalities, radiology issues related to patients, policy and practice improvements, and clinically-oriented imaging physics and informatics. The journal is a valuable resource for practicing radiologists, radiologists-in-training and other clinicians with an interest in imaging. Papers are carefully peer-reviewed and selected by our experienced subject editors who are leading experts spanning the range of imaging sub-specialties, which include:
-Body Imaging-
Breast Imaging-
Cardiothoracic Imaging-
Imaging Physics and Informatics-
Molecular Imaging and Nuclear Medicine-
Musculoskeletal and Emergency Imaging-
Neuroradiology-
Practice, Policy & Education-
Pediatric Imaging-
Vascular and Interventional Radiology