{"title":"Galois trace forms of type An,Dn,En for odd n","authors":"Riku Higa , Yoshinosuke Hirakawa","doi":"10.1016/j.jnt.2024.12.007","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>p</em> be an odd prime number and <span><math><msub><mrow><mi>ζ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>:</mo><mo>=</mo><mi>exp</mi><mo></mo><mo>(</mo><mn>2</mn><mi>π</mi><mi>i</mi><mo>/</mo><mi>p</mi><mo>)</mo></math></span>. Then, it is well-known that the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>-root lattice can be realized as the (Hermitian) trace form of the <em>p</em>-th cyclotomic extension <span><math><mi>Q</mi><mo>(</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo><mo>/</mo><mi>Q</mi></math></span> restricted to the fractional ideal generated by <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>)</mo></mrow><mrow><mo>−</mo><mo>(</mo><mi>p</mi><mo>−</mo><mn>3</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></msup></math></span>. In this paper, in contrast with the case of the <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>-root lattice, we prove the following theorem: Let <em>n</em> be an odd positive integer and <span><math><mi>F</mi><mo>/</mo><mi>Q</mi></math></span> be a Galois extension of degree <em>n</em>. Then, the number field <em>F</em> does not contain a fractional ideal Λ such that the restricted trace form <span><math><mo>(</mo><mi>Λ</mi><mo>,</mo><mi>Tr</mi><mspace></mspace><msub><mrow><mo>|</mo></mrow><mrow><mi>Λ</mi><mo>×</mo><mi>Λ</mi></mrow></msub><mo>)</mo></math></span> is of type <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In the proof, we use the prime ideal factorization in <em>F</em> with care of certain 2-adic obstruction for Λ being of type <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Additionally, we prove that every cyclic cubic field contains infinitely many lattices of type <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> (i.e., normalized face centered cubic lattices) having normal <span><math><mi>Z</mi></math></span>-bases. The latter fact is in contrast with another fact that among quadratic fields only <span><math><mi>Q</mi><mo>(</mo><msqrt><mrow><mo>±</mo><mn>3</mn></mrow></msqrt><mo>)</mo></math></span> contain lattices of type <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"275 ","pages":"Pages 196-213"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X25000538","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let p be an odd prime number and . Then, it is well-known that the -root lattice can be realized as the (Hermitian) trace form of the p-th cyclotomic extension restricted to the fractional ideal generated by . In this paper, in contrast with the case of the -root lattice, we prove the following theorem: Let n be an odd positive integer and be a Galois extension of degree n. Then, the number field F does not contain a fractional ideal Λ such that the restricted trace form is of type . In the proof, we use the prime ideal factorization in F with care of certain 2-adic obstruction for Λ being of type . Additionally, we prove that every cyclic cubic field contains infinitely many lattices of type (i.e., normalized face centered cubic lattices) having normal -bases. The latter fact is in contrast with another fact that among quadratic fields only contain lattices of type .
期刊介绍:
The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field.
The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory.
Starting in May 2019, JNT will have a new format with 3 sections:
JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access.
JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions.
Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.