Exploring the optimized Ge/Si heterostructure extended source (ES) Fin-TFETs for improved DC and analog performance

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
B.V. Rao , Arun Kumar , Brinda Bhowmick
{"title":"Exploring the optimized Ge/Si heterostructure extended source (ES) Fin-TFETs for improved DC and analog performance","authors":"B.V. Rao ,&nbsp;Arun Kumar ,&nbsp;Brinda Bhowmick","doi":"10.1016/j.micrna.2025.208133","DOIUrl":null,"url":null,"abstract":"<div><div>Tunnel Field-Effect Transistors (TFETs) have been recognized as a potential alternative for low-power switching devices because of their ability to achieve a superior subthreshold swing (SS) compared to traditional MOSFETs. Nevertheless, point tunneling-based TFETs have major issues, such as reduced on-current (I<sub>on</sub>) and elevated SS, which limit their practical application. These issues stem from restricted tunneling space and an inefficient tunneling direction. To overcome these limitations, this work introduces an Extended Source Fin-TFET (ES Fin-TFET) architecture utilizing a Ge/Si heterostructure. The device achieves significant performance improvements by combining point tunneling at the source-channel hetero-junction and line tunneling in the extended source region. The proposed ES Fin-TFET exhibits a high on-current of 1.25 × 10<sup>−5</sup> A while maintaining a low off-current of 1.35 × 10<sup>−17</sup> A. The device further demonstrates exceptional DC characteristics, including a threshold voltage (V<sub>T</sub>) of 0.28 V, a high on-off current ratio exceeding ∼1 × 10<sup>12</sup>, and an average subthreshold slope of 23 mV/decade. Additionally, AC performance analysis of the proposed device reveals a transconductance of 2.5 × 10<sup>−5</sup> S, a gain-bandwidth product of 1.6 × 10<sup>10</sup> Hz, a cut-off frequency of 4.5 × 10<sup>10</sup> Hz, and a transconductance generation factor of 6.9 × 10<sup>5</sup> V<sup>−1</sup>, demonstrating its potential for high-performance analog and RF applications.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"203 ","pages":"Article 208133"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Tunnel Field-Effect Transistors (TFETs) have been recognized as a potential alternative for low-power switching devices because of their ability to achieve a superior subthreshold swing (SS) compared to traditional MOSFETs. Nevertheless, point tunneling-based TFETs have major issues, such as reduced on-current (Ion) and elevated SS, which limit their practical application. These issues stem from restricted tunneling space and an inefficient tunneling direction. To overcome these limitations, this work introduces an Extended Source Fin-TFET (ES Fin-TFET) architecture utilizing a Ge/Si heterostructure. The device achieves significant performance improvements by combining point tunneling at the source-channel hetero-junction and line tunneling in the extended source region. The proposed ES Fin-TFET exhibits a high on-current of 1.25 × 10−5 A while maintaining a low off-current of 1.35 × 10−17 A. The device further demonstrates exceptional DC characteristics, including a threshold voltage (VT) of 0.28 V, a high on-off current ratio exceeding ∼1 × 1012, and an average subthreshold slope of 23 mV/decade. Additionally, AC performance analysis of the proposed device reveals a transconductance of 2.5 × 10−5 S, a gain-bandwidth product of 1.6 × 1010 Hz, a cut-off frequency of 4.5 × 1010 Hz, and a transconductance generation factor of 6.9 × 105 V−1, demonstrating its potential for high-performance analog and RF applications.
探索优化的Ge/Si异质结构扩展源(ES) fin - tfet,以提高直流和模拟性能
与传统的mosfet相比,隧道场效应晶体管(tfet)能够实现更好的亚阈值摆幅(SS),因此被认为是低功耗开关器件的潜在替代品。然而,基于点隧道的tfet存在一些主要问题,如导通电流(Ion)降低和SS升高,这限制了它们的实际应用。这些问题源于隧道空间的限制和隧道方向的低效。为了克服这些限制,本工作引入了一种利用Ge/Si异质结构的扩展源Fin-TFET (ES Fin-TFET)架构。该器件通过结合源信道异质交界处的点隧穿和扩展源区域的线隧穿,实现了显著的性能改进。所提出的ES Fin-TFET具有1.25 × 10−5 a的高导通电流,同时保持1.35 × 10−17 a的低关断电流。该器件进一步展示了卓越的直流特性,包括0.28 V的阈值电压(VT),超过~ 1 × 1012的高通断电流比,以及23 mV/ 10年的平均亚阈值斜率。此外,该器件的交流性能分析显示,其跨导率为2.5 × 10−5 S,增益带宽积为1.6 × 1010 Hz,截止频率为4.5 × 1010 Hz,跨导产生因子为6.9 × 105 V−1,显示了其在高性能模拟和射频应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信