Kristina Weinel*, Marc Benjamin Hahn, Axel Lubk, Wen Feng, Ignacio Guillermo Gonzalez Martinez, Bernd Büchner and Leonardo Agudo Jácome,
{"title":"Nanoparticle Synthesis by Precursor Irradiation with Low-Energy Electrons","authors":"Kristina Weinel*, Marc Benjamin Hahn, Axel Lubk, Wen Feng, Ignacio Guillermo Gonzalez Martinez, Bernd Büchner and Leonardo Agudo Jácome, ","doi":"10.1021/acsanm.4c0603310.1021/acsanm.4c06033","DOIUrl":null,"url":null,"abstract":"<p >Nanoparticles (NPs) and their fabrication routes are intensely studied for their wide range of application in optics, chemistry, and medicine. Γ-ray and ion irradiation of precursor matter are established methods that facilitate tailored NP synthesis without complicated chemistry. Here, we develop and explore NP synthesis based on irradiating precursor microparticles with low-energy electron beams. We specifically demonstrate the fabrication of plasmonic gold nanoparticles of sizes between 3 and 350 nm on an amorphous SiO<sub><i>x</i></sub> substrate using a 30 kV electron beam. By detailed comparison with electron scattering simulations and thermodynamic modeling, we reveal the dominant role of inelastic electron–matter interaction and subsequent localized heating for the observed vaporization of the precursor gold microparticles. This general principle suggests the suitability of electron-beam irradiation for synthesizing NPs of a wide class of materials.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 10","pages":"4980–4988 4980–4988"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsanm.4c06033","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c06033","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoparticles (NPs) and their fabrication routes are intensely studied for their wide range of application in optics, chemistry, and medicine. Γ-ray and ion irradiation of precursor matter are established methods that facilitate tailored NP synthesis without complicated chemistry. Here, we develop and explore NP synthesis based on irradiating precursor microparticles with low-energy electron beams. We specifically demonstrate the fabrication of plasmonic gold nanoparticles of sizes between 3 and 350 nm on an amorphous SiOx substrate using a 30 kV electron beam. By detailed comparison with electron scattering simulations and thermodynamic modeling, we reveal the dominant role of inelastic electron–matter interaction and subsequent localized heating for the observed vaporization of the precursor gold microparticles. This general principle suggests the suitability of electron-beam irradiation for synthesizing NPs of a wide class of materials.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.