Green Recovery of Precious Metals from Discarded Waste through a Peroxymonosulfate-Based Homogeneous Fenton-Like System

IF 7.4 Q1 ENGINEERING, ENVIRONMENTAL
Anting Ding, Chenchen Zhu, Chuanying Liu* and Chengliang Xiao*, 
{"title":"Green Recovery of Precious Metals from Discarded Waste through a Peroxymonosulfate-Based Homogeneous Fenton-Like System","authors":"Anting Ding,&nbsp;Chenchen Zhu,&nbsp;Chuanying Liu* and Chengliang Xiao*,&nbsp;","doi":"10.1021/acsestengg.4c0067010.1021/acsestengg.4c00670","DOIUrl":null,"url":null,"abstract":"<p >Precious metal (PM) recovery from discarded waste is essential to mitigate supply risks; however, traditional methods typically cause substantial environmental harm. This study presents a novel leaching process employing a low-concentration peroxymonosulfate (PMS)/CoCl<sub>2</sub> Fenton-like system for the efficient recovery of gold (Au), palladium (Pd), and platinum (Pt) from electronic waste and spent catalysts. Through electron paramagnetic resonance spectroscopy, <sup>18</sup>O isotope tracing, and density functional theory calculations, SO<sub>4</sub>·<sup>–</sup>, ·OH, and reactive Co species were identified as the primary reactive species responsible for the oxidative dissolution of the PMs. Notably, the spontaneous cycling between Co(II) and Co(III) oxidation states sustained the solution’s reactivity for over 12 consecutive cycles. To demonstrate the efficacy of this method, hectogram quantities of spent Pd/C catalyst were processed, yielding 1.97 g of high-purity Pd. Operating at room temperature and without the need for strong acids or toxic cyanides, this method offers a sustainable alternative for PM recovery. Furthermore, this study highlights the broader potential of advanced oxidation processes for the efficient and environmentally friendly recycling of secondary resources.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 3","pages":"782–791 782–791"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Precious metal (PM) recovery from discarded waste is essential to mitigate supply risks; however, traditional methods typically cause substantial environmental harm. This study presents a novel leaching process employing a low-concentration peroxymonosulfate (PMS)/CoCl2 Fenton-like system for the efficient recovery of gold (Au), palladium (Pd), and platinum (Pt) from electronic waste and spent catalysts. Through electron paramagnetic resonance spectroscopy, 18O isotope tracing, and density functional theory calculations, SO4·, ·OH, and reactive Co species were identified as the primary reactive species responsible for the oxidative dissolution of the PMs. Notably, the spontaneous cycling between Co(II) and Co(III) oxidation states sustained the solution’s reactivity for over 12 consecutive cycles. To demonstrate the efficacy of this method, hectogram quantities of spent Pd/C catalyst were processed, yielding 1.97 g of high-purity Pd. Operating at room temperature and without the need for strong acids or toxic cyanides, this method offers a sustainable alternative for PM recovery. Furthermore, this study highlights the broader potential of advanced oxidation processes for the efficient and environmentally friendly recycling of secondary resources.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信