Yun-Yan Gao, Yuan-Ping Zeng, Xuan-Xin Chen, Zhi-Yi He, Raymond Jianxiong Zeng* and Hou-Feng Wang*,
{"title":"Skeletal Structure-Based Conditioning for Improved Deep-Dewatering Efficiency of High-Salinity Food Waste Digestate","authors":"Yun-Yan Gao, Yuan-Ping Zeng, Xuan-Xin Chen, Zhi-Yi He, Raymond Jianxiong Zeng* and Hou-Feng Wang*, ","doi":"10.1021/acsestengg.4c0060210.1021/acsestengg.4c00602","DOIUrl":null,"url":null,"abstract":"<p >The solid–liquid separation of food waste anaerobic digestate residue (FD) is a crucial step in maximizing the efficiency and sustainability of anaerobic digestion processes. However, the high salinity and organic content of FD significantly hinder conventional dewatering methods, making deep-dewatering particularly challenging. This study introduces a composite conditioning strategy using basic aluminum chloride (BAC) and a complex quaternary ammonium salt surfactant (G agent) to enhance the digestate’s drainage performance and dewatering efficiency by constructing a skeletal structure within it. Experimental results showed that BAC+G composite conditioning significantly reduced the water content of the digestate from 90.69 ± 0.36 to 54.19 ± 0.16%, achieving deep dewatering that was unattainable with BAC or G agent alone. On a macroscopic scale, the BAC+G treatment enhanced floc strength and increased flocculated particle size to 469.07 ± 0.73 μm, approximately 18 times larger than untreated digestate, which significantly mitigated clogging and improved the permeability coefficient from 2.40 × 10<sup>–6</sup> to 9.79 × 10<sup>–6</sup> cm/s, ensuring smooth water discharge. Microscopically, the treatment increased effective porosity by 34.90%, reduced tortuosity to 1.45, and improved overall permeability (4.41), accelerating water discharge and further enhancing the dewatering performance. Additionally, BAC+G composite conditioning transformed floc particles to hydrophobic, lowered the interfacial free energy, and formed stable structures, further enhancing dewatering performance. These findings demonstrate that combining flocculation with skeletal structure formation is critical for achieving deep-dewatering of a high-salinity food waste digestate. This research provides a promising approach for improving digestate management and could have broader implications for the sustainable treatment of high-moisture organic waste streams.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 3","pages":"620–630 620–630"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The solid–liquid separation of food waste anaerobic digestate residue (FD) is a crucial step in maximizing the efficiency and sustainability of anaerobic digestion processes. However, the high salinity and organic content of FD significantly hinder conventional dewatering methods, making deep-dewatering particularly challenging. This study introduces a composite conditioning strategy using basic aluminum chloride (BAC) and a complex quaternary ammonium salt surfactant (G agent) to enhance the digestate’s drainage performance and dewatering efficiency by constructing a skeletal structure within it. Experimental results showed that BAC+G composite conditioning significantly reduced the water content of the digestate from 90.69 ± 0.36 to 54.19 ± 0.16%, achieving deep dewatering that was unattainable with BAC or G agent alone. On a macroscopic scale, the BAC+G treatment enhanced floc strength and increased flocculated particle size to 469.07 ± 0.73 μm, approximately 18 times larger than untreated digestate, which significantly mitigated clogging and improved the permeability coefficient from 2.40 × 10–6 to 9.79 × 10–6 cm/s, ensuring smooth water discharge. Microscopically, the treatment increased effective porosity by 34.90%, reduced tortuosity to 1.45, and improved overall permeability (4.41), accelerating water discharge and further enhancing the dewatering performance. Additionally, BAC+G composite conditioning transformed floc particles to hydrophobic, lowered the interfacial free energy, and formed stable structures, further enhancing dewatering performance. These findings demonstrate that combining flocculation with skeletal structure formation is critical for achieving deep-dewatering of a high-salinity food waste digestate. This research provides a promising approach for improving digestate management and could have broader implications for the sustainable treatment of high-moisture organic waste streams.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.