Preparation of Epoxy-Enhanced Silica Aerogels with Thermal Insulation and Hydrophobicity by Ambient Pressure Drying

IF 4.4 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Daixuan Gong, Meijie Qu, Xincheng Wang, Xin Ai, Ping Tang, Wei Zhao, Xiaolin Wang and Yuezhen Bin*, 
{"title":"Preparation of Epoxy-Enhanced Silica Aerogels with Thermal Insulation and Hydrophobicity by Ambient Pressure Drying","authors":"Daixuan Gong,&nbsp;Meijie Qu,&nbsp;Xincheng Wang,&nbsp;Xin Ai,&nbsp;Ping Tang,&nbsp;Wei Zhao,&nbsp;Xiaolin Wang and Yuezhen Bin*,&nbsp;","doi":"10.1021/acsapm.4c0355410.1021/acsapm.4c03554","DOIUrl":null,"url":null,"abstract":"<p >The SiO<sub>2</sub> aerogel is attractive for thermal insulation but is plagued by poor mechanical and high drying process costs. Therefore, there is an urgent requirement for developing a low-cost, low-density, low-thermal conductivity, and hydrophobic monolithic SiO<sub>2</sub> aerogel with high strength. This work reports two epoxy-enhanced amine-modified silica aerogels (AMSA). One type is to utilize 3-aminopropyl-triethoxysilane (APTES) and tetraethylorthosilicate (TEOS) to synthesize AMSA first, ensured to be crack-free by introducing ionic liquids (IL) into the reaction system, and then cross-link with epoxy resin to obtain composite aerogels with a framework structure by a two-step enhancement gel network strategy (TES-AMSA). Composite aerogels are thermally insulating and hydrophobic, the maximum compression strength of TES-AMSA reaches 3.97 MPa, and the minimum thermal conductivity and maximum water contact angle (WCA) are 0.031 W m<sup>–1</sup> K<sup>–1</sup> and 137°, respectively. Another way is to add epoxy resin as a reinforcement to the solvent system before forming the gel network without the role of IL. A composite aerogel like the brick structure by a one-step enhancement gel network strategy (OES-AMSA) was produced under atmospheric pressure drying. The maximum compression strength of OES-AMSA reached 1.57 MPa. In addition, OES-AMSA also has a low thermal conductivity (0.035 W m<sup>–1</sup> K<sup>–1</sup>) and a high WCA (143°). Two composite aerogels provide insight for the designing of pressure-resistant insulation materials, aiming to use them as an insulating material for crude oil storage tanks, ultralow-temperature refrigerators, and construction materials.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 5","pages":"2997–3007 2997–3007"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c03554","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The SiO2 aerogel is attractive for thermal insulation but is plagued by poor mechanical and high drying process costs. Therefore, there is an urgent requirement for developing a low-cost, low-density, low-thermal conductivity, and hydrophobic monolithic SiO2 aerogel with high strength. This work reports two epoxy-enhanced amine-modified silica aerogels (AMSA). One type is to utilize 3-aminopropyl-triethoxysilane (APTES) and tetraethylorthosilicate (TEOS) to synthesize AMSA first, ensured to be crack-free by introducing ionic liquids (IL) into the reaction system, and then cross-link with epoxy resin to obtain composite aerogels with a framework structure by a two-step enhancement gel network strategy (TES-AMSA). Composite aerogels are thermally insulating and hydrophobic, the maximum compression strength of TES-AMSA reaches 3.97 MPa, and the minimum thermal conductivity and maximum water contact angle (WCA) are 0.031 W m–1 K–1 and 137°, respectively. Another way is to add epoxy resin as a reinforcement to the solvent system before forming the gel network without the role of IL. A composite aerogel like the brick structure by a one-step enhancement gel network strategy (OES-AMSA) was produced under atmospheric pressure drying. The maximum compression strength of OES-AMSA reached 1.57 MPa. In addition, OES-AMSA also has a low thermal conductivity (0.035 W m–1 K–1) and a high WCA (143°). Two composite aerogels provide insight for the designing of pressure-resistant insulation materials, aiming to use them as an insulating material for crude oil storage tanks, ultralow-temperature refrigerators, and construction materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信