{"title":"Response of Exogenous and Indigenous Microorganisms in Alleviating Acetate–Ammonium Coinhibition during Thermophilic Anaerobic Digestion","authors":"Chao Yang, Pinjing He, Hua Zhang and Fan Lü*, ","doi":"10.1021/acsestengg.4c0062810.1021/acsestengg.4c00628","DOIUrl":null,"url":null,"abstract":"<p >Bioaugmentation can alleviate the inhibition of acids and ammonia by introducing functional strains in anaerobic digesters, but there is an urgent need to develop functional strains that can be effective under thermophilic anaerobic digesters. The present study constructed a bioaugmentation consortium with four functional strains, namely, <i>Coprothermobacter</i>, <i>Thermacetogenium</i>, <i>Methanothermobacter</i>, and <i>Methanosarcina</i>, to strengthen the synergistic function of syntrophic acetate oxidation and methanogenesis for inhibited thermophilic anaerobic digesters. The result shows that the bioaugmentation with cells constituting only 1.11% (on the basis of VS to VS) of the inoculum led to methane production increasing by 702% at the coinhibition of 3 g/L acetate and 7 g NH<sub>4</sub><sup>+</sup>-N/L, and by 49.5% at the coinhibition of 12 g/L acetate and 4 g NH<sub>4</sub><sup>+</sup>-N/L. Highly tolerant <i>Coprothermobacter</i> contributed to this microbiological domino effect by collaborating with exogenous hydrogenotrophic <i>Methanothermobacter</i> and priming the indigenous syntrophic acetate-oxidizing <i>Syntrophaceticus</i> and hydrogenotrophic <i>Methanoculleus</i>. This bioaugmentation enhanced hydrogenotrophic methanogenesis, evidenced by carbon isotopic signals and an upregulation of the relating genes. Up-regulated genes relating to ion transport and catalyzing energy conversion suggested that this bioaugmentation was favorable to maintain normal cellular osmolality and meet energy demand under inhibited conditions.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 3","pages":"655–665 655–665"},"PeriodicalIF":7.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bioaugmentation can alleviate the inhibition of acids and ammonia by introducing functional strains in anaerobic digesters, but there is an urgent need to develop functional strains that can be effective under thermophilic anaerobic digesters. The present study constructed a bioaugmentation consortium with four functional strains, namely, Coprothermobacter, Thermacetogenium, Methanothermobacter, and Methanosarcina, to strengthen the synergistic function of syntrophic acetate oxidation and methanogenesis for inhibited thermophilic anaerobic digesters. The result shows that the bioaugmentation with cells constituting only 1.11% (on the basis of VS to VS) of the inoculum led to methane production increasing by 702% at the coinhibition of 3 g/L acetate and 7 g NH4+-N/L, and by 49.5% at the coinhibition of 12 g/L acetate and 4 g NH4+-N/L. Highly tolerant Coprothermobacter contributed to this microbiological domino effect by collaborating with exogenous hydrogenotrophic Methanothermobacter and priming the indigenous syntrophic acetate-oxidizing Syntrophaceticus and hydrogenotrophic Methanoculleus. This bioaugmentation enhanced hydrogenotrophic methanogenesis, evidenced by carbon isotopic signals and an upregulation of the relating genes. Up-regulated genes relating to ion transport and catalyzing energy conversion suggested that this bioaugmentation was favorable to maintain normal cellular osmolality and meet energy demand under inhibited conditions.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.