Electron Itinerancy Mediated by Oxygen Vacancies Breaks the Inert Electron Chain to Boost Lithium–Oxygen Batteries Electrocatalysis

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yaning Fu, Chunmei Liu, Lina Song, Shaoze Zhao, Mengyao Huang, Zhongjun Li, Huabiao Tang, Youcai Lu, Jijing Xu, Qingchao Liu
{"title":"Electron Itinerancy Mediated by Oxygen Vacancies Breaks the Inert Electron Chain to Boost Lithium–Oxygen Batteries Electrocatalysis","authors":"Yaning Fu,&nbsp;Chunmei Liu,&nbsp;Lina Song,&nbsp;Shaoze Zhao,&nbsp;Mengyao Huang,&nbsp;Zhongjun Li,&nbsp;Huabiao Tang,&nbsp;Youcai Lu,&nbsp;Jijing Xu,&nbsp;Qingchao Liu","doi":"10.1002/anie.202501837","DOIUrl":null,"url":null,"abstract":"<p>The synergistic effect of dopants and oxygen vacancies (V<sub>o</sub>) in metal oxides is crucial for enhancing the adsorption and electron transfer processes in lithium–oxygen (Li–O<sub>2</sub>) batteries; however, the underlying mechanisms remain unclear. Herein, Ru single-atom-modified TiO<sub>2</sub> nanorod array (Ru<sub>1</sub>–TiO<sub>2−</sub><i><sub>x</sub></i>) electrocatalysts with abundant V<sub>o</sub> were fabricated, serving as an efficient catalyst for Li–O<sub>2</sub> batteries. Experimental and theoretical investigations have demonstrated that V<sub>o</sub> functions as an “electron pump”, facilitating electron itinerant behavior, while Ru<sub>1</sub> serves as an “electron buffer” to further activate the [Ru–O–Ti] electronic chain. This synergistic interplay endows Li–O<sub>2</sub> batteries with a highly active and stable bidirectional self-regulating capability during the process of circulation, exhibiting an ultra-low charge polarization (0.42V) and exceptional cycling stability (1680 h). V<sub>o</sub> and Ru<sub>1</sub> synergistically modulate the <i>d</i>-band center at the Ti site to establish an adaptively tunable Ru–Ti dual-active site. This adjustment effectively balances the binding strength with the interface oxygen intermediate (<sup>*</sup>O), thereby significantly reducing the activation barrier. The Hamiltonian layout further revealed the crucial role of remote orbital coupling in maintaining the structural stability. This study not only provides profound insights into V<sub>o</sub>-dependent electron transfer kinetics but also proposes new strategies and theoretical guidance for the activation of inert materials.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 21","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202501837","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The synergistic effect of dopants and oxygen vacancies (Vo) in metal oxides is crucial for enhancing the adsorption and electron transfer processes in lithium–oxygen (Li–O2) batteries; however, the underlying mechanisms remain unclear. Herein, Ru single-atom-modified TiO2 nanorod array (Ru1–TiO2−x) electrocatalysts with abundant Vo were fabricated, serving as an efficient catalyst for Li–O2 batteries. Experimental and theoretical investigations have demonstrated that Vo functions as an “electron pump”, facilitating electron itinerant behavior, while Ru1 serves as an “electron buffer” to further activate the [Ru–O–Ti] electronic chain. This synergistic interplay endows Li–O2 batteries with a highly active and stable bidirectional self-regulating capability during the process of circulation, exhibiting an ultra-low charge polarization (0.42V) and exceptional cycling stability (1680 h). Vo and Ru1 synergistically modulate the d-band center at the Ti site to establish an adaptively tunable Ru–Ti dual-active site. This adjustment effectively balances the binding strength with the interface oxygen intermediate (*O), thereby significantly reducing the activation barrier. The Hamiltonian layout further revealed the crucial role of remote orbital coupling in maintaining the structural stability. This study not only provides profound insights into Vo-dependent electron transfer kinetics but also proposes new strategies and theoretical guidance for the activation of inert materials.

Abstract Image

氧空位介导的电子流动打破惰性电子链促进锂氧电池电催化
掺杂剂与金属氧化物中氧空位(Vo)之间的复杂相互作用对增强锂氧电池的吸附和电子转移过程至关重要。然而,Vo、掺杂剂和宿主基质之间的协同机制尚不清楚。本文制备了含有丰富Vo的Ru单原子修饰TiO2纳米棒(Ru1-TiO2-x),作为Li-O2电池的高效催化剂。实验和理论研究表明,Vo作为“电子泵”,促进了电子的流动行为,而Ru1作为“电子缓冲器”,进一步激活了[Ru-O-Ti]电子链,实现了Li-O2电池在循环过程中高度活跃和稳定的双向自调节特性。因此,ru1 - tio2 -x基锂氧电池具有超低电荷极化和稳定的性能。Vo和Ru1协同协调它们对Ti位点d波段中心的控制,建立一个灵活可调的Ru-Ti双活性位点。这种调整有效地平衡了与界面氧中间体(*O)的结合强度,从而显著降低了激活势垒。哈密顿布局进一步揭示了远程轨道耦合在维持结构稳定性中的关键作用。这项研究为vo依赖的电子转移动力学提供了见解,并引入了激活催化惰性材料的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信