Marina Ciriani, Bas Ritzen, Thomas Schmitges, Raf Reintjens, Peter Hermsen, Ruben van Summeren
{"title":"From Lab Procedure to Industrial Reality: Continuous Flow Diisobutylaluminum Hydride Reduction of Esters to Aldehydes","authors":"Marina Ciriani, Bas Ritzen, Thomas Schmitges, Raf Reintjens, Peter Hermsen, Ruben van Summeren","doi":"10.1021/acs.oprd.4c00357","DOIUrl":null,"url":null,"abstract":"The selective partial reduction of esters to the corresponding aldehydes has been a long-standing challenge in the field of chemistry due to rapid reaction kinetics, high exothermicity, and generation of unstable intermediates. Batch reactors, with their limited heat transfer capabilities, necessitate careful temperature control and prolonged dosing of DIBAL-H, typically at very low temperatures (−70 to −50 °C). This process, especially on a plant scale, can take several hours and often results in considerable over-reduction to the alcohol product despite the cryogenic conditions. As industries aim to increase productivity and efficiency, the transition from laboratory-scale processes to larger-scale manufacturing becomes crucial. Herein, we report a pilot-scale DIBAL-H reduction of an ester to the corresponding aldehyde with product output ranging from 0.72 to 1.2 kg/h using the benefits of continuous flow chemistry. Furthermore, we demonstrate the advantages of 3D metal printing in fabricating the flow reactor, heat exchangers, and static mixers, leading to a straightforward scale-up of this highly reactive and exothermic chemical process demanding excellent heat and mass transfer properties.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"22 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00357","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The selective partial reduction of esters to the corresponding aldehydes has been a long-standing challenge in the field of chemistry due to rapid reaction kinetics, high exothermicity, and generation of unstable intermediates. Batch reactors, with their limited heat transfer capabilities, necessitate careful temperature control and prolonged dosing of DIBAL-H, typically at very low temperatures (−70 to −50 °C). This process, especially on a plant scale, can take several hours and often results in considerable over-reduction to the alcohol product despite the cryogenic conditions. As industries aim to increase productivity and efficiency, the transition from laboratory-scale processes to larger-scale manufacturing becomes crucial. Herein, we report a pilot-scale DIBAL-H reduction of an ester to the corresponding aldehyde with product output ranging from 0.72 to 1.2 kg/h using the benefits of continuous flow chemistry. Furthermore, we demonstrate the advantages of 3D metal printing in fabricating the flow reactor, heat exchangers, and static mixers, leading to a straightforward scale-up of this highly reactive and exothermic chemical process demanding excellent heat and mass transfer properties.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.