Comparative study of the early stages of crystallization of calcium silicate hydrate (C-S-H) and calcium aluminate silicate hydrate (C-A-S-H)

IF 10.9 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Yannick H. Emminger, Luca Ladner, Cristina Ruiz-Agudo
{"title":"Comparative study of the early stages of crystallization of calcium silicate hydrate (C-S-H) and calcium aluminate silicate hydrate (C-A-S-H)","authors":"Yannick H. Emminger,&nbsp;Luca Ladner,&nbsp;Cristina Ruiz-Agudo","doi":"10.1016/j.cemconres.2025.107873","DOIUrl":null,"url":null,"abstract":"<div><div>The use of SCMs as partial substitutes for PC has made C-A-S-H a key binding phase in modern cement, yet its crystallization mechanism remains elusive. This study investigates the early stages of synthetic C-A-S-H formation and compares them with C-S-H using double addition of stoichiometric calcium and silicon amounts at a Ca/Al ratio of 5. Through real-time monitoring of solution parameters—transmittance, free Ca<sup>2+</sup> conductivity, and pH—complemented by structural and morphological characterization (FTIR, XRD, SEM, TEM, and NMR), we demonstrate that C-A-S-H formation is at least a two-step process involving amorphous globules, which then evolve into foil-like particles with higher crystallinity. Additionally, we reveal that Al promotes Ca binding during the prenucleation stage and slightly accelerates nucleation. These results highlight important differences in the formation pathways of both hydrates, particularly the extended stability of the C-A-S-H globules, which might affect the workability and setting time in aluminium-containing blended cements.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"193 ","pages":"Article 107873"},"PeriodicalIF":10.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625000924","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of SCMs as partial substitutes for PC has made C-A-S-H a key binding phase in modern cement, yet its crystallization mechanism remains elusive. This study investigates the early stages of synthetic C-A-S-H formation and compares them with C-S-H using double addition of stoichiometric calcium and silicon amounts at a Ca/Al ratio of 5. Through real-time monitoring of solution parameters—transmittance, free Ca2+ conductivity, and pH—complemented by structural and morphological characterization (FTIR, XRD, SEM, TEM, and NMR), we demonstrate that C-A-S-H formation is at least a two-step process involving amorphous globules, which then evolve into foil-like particles with higher crystallinity. Additionally, we reveal that Al promotes Ca binding during the prenucleation stage and slightly accelerates nucleation. These results highlight important differences in the formation pathways of both hydrates, particularly the extended stability of the C-A-S-H globules, which might affect the workability and setting time in aluminium-containing blended cements.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信