Kelly S. Aho, Kaelin M. Cawley, Robert O. Hall, Robert T. Hensley, Walter K. Dodds, Nicolas Harrison, Keli J. Goodman
{"title":"Gas transfer velocity (k600$$ {k}_{600} $$) increases with discharge in steep streams but not in low‐slope streams","authors":"Kelly S. Aho, Kaelin M. Cawley, Robert O. Hall, Robert T. Hensley, Walter K. Dodds, Nicolas Harrison, Keli J. Goodman","doi":"10.1002/lol2.70003","DOIUrl":null,"url":null,"abstract":"Gas transfer velocity () controls gas fluxes between aquatic ecosystems and the atmosphere. In streams, is controlled by turbulence and, thus, local hydrology and geomorphology. Resultantly, variability in can be large and modeling from physical parameters can have large uncertainty. Here, we leverage a large dataset of estimates derived from tracer‐gas experiments in 22 US streams across a range of discharges. Our analysis shows that was highly variable both spatially across and temporally within streams, with estimates of spanning three orders of magnitude. Overall, scaled with discharge in steep streams due to relatively high stream power, but not in low‐slope streams, where stream power was relatively low even at high flows. Understanding how responds to stream discharge in a wide variety of streams is key to creating temporally and spatially resolved estimates of biogeochemical processes in streams.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"68 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/lol2.70003","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gas transfer velocity () controls gas fluxes between aquatic ecosystems and the atmosphere. In streams, is controlled by turbulence and, thus, local hydrology and geomorphology. Resultantly, variability in can be large and modeling from physical parameters can have large uncertainty. Here, we leverage a large dataset of estimates derived from tracer‐gas experiments in 22 US streams across a range of discharges. Our analysis shows that was highly variable both spatially across and temporally within streams, with estimates of spanning three orders of magnitude. Overall, scaled with discharge in steep streams due to relatively high stream power, but not in low‐slope streams, where stream power was relatively low even at high flows. Understanding how responds to stream discharge in a wide variety of streams is key to creating temporally and spatially resolved estimates of biogeochemical processes in streams.
期刊介绍:
Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.