Identification of a non-inhibitory aptameric ligand to CRL2ZYG11B E3 ligase for targeted protein degradation

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhihao Yang, Miao Chen, Ruixin Ge, Ping Zhou, Wei Pan, Jiayi Song, Shuwen Ma, Song Chen, Chenyu Xu, Mengyu Zhou, Wenyi Mi, Hua Ni, He Chen, Xue Yao, Xifeng Dong, Yan Chen, Jun Zhou, Chenghao Xuan, Cheng Dong, Hua Yan, Songbo Xie
{"title":"Identification of a non-inhibitory aptameric ligand to CRL2ZYG11B E3 ligase for targeted protein degradation","authors":"Zhihao Yang, Miao Chen, Ruixin Ge, Ping Zhou, Wei Pan, Jiayi Song, Shuwen Ma, Song Chen, Chenyu Xu, Mengyu Zhou, Wenyi Mi, Hua Ni, He Chen, Xue Yao, Xifeng Dong, Yan Chen, Jun Zhou, Chenghao Xuan, Cheng Dong, Hua Yan, Songbo Xie","doi":"10.1038/s41467-025-57823-5","DOIUrl":null,"url":null,"abstract":"<p>As a crucial element of proteolysis targeting chimeras (PROTACs), the choice of E3 ubiquitin ligase significantly influences degradation efficacy and selectivity. However, the available arsenal of E3 ligases for PROTAC development remains underexplored, severely limiting the scope of targeted protein degradation. In this study, we identify a non-inhibitory aptamer targeting ZYG11B, a substrate receptor of the Cullin 2-RING ligase complex, as an E3 warhead for targeted protein degradation. This aptamer-based PROTAC platform, termed ZATAC, is facilely produced through bioorthogonal chemistry or self-assembly and shows promise in eliminating several undruggable target proteins, including nucleolin (NCL), SRY-box transcription factor 2 (SOX2), and mutant p53-R175H, underscoring its universality and versatility. To specifically deliver ZATACs into cancer cells, we further develop DNA three-way junction-based ZATACs (3WJ-ZATACs) by integrating an additional aptamer that selectively recognizes the protein overexpressed on the surface of cancer cells. The 3WJ-ZATACs demonstrate in vivo tumor-specific distribution and achieve dual-target degradation, thereby suppressing tumor growth without causing noticeable toxicity. In summary, ZATACs represent a general, modular, and straightforward platform for targeted protein degradation, offering insights into the potential of other untapped E3 ligases.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"56 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57823-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As a crucial element of proteolysis targeting chimeras (PROTACs), the choice of E3 ubiquitin ligase significantly influences degradation efficacy and selectivity. However, the available arsenal of E3 ligases for PROTAC development remains underexplored, severely limiting the scope of targeted protein degradation. In this study, we identify a non-inhibitory aptamer targeting ZYG11B, a substrate receptor of the Cullin 2-RING ligase complex, as an E3 warhead for targeted protein degradation. This aptamer-based PROTAC platform, termed ZATAC, is facilely produced through bioorthogonal chemistry or self-assembly and shows promise in eliminating several undruggable target proteins, including nucleolin (NCL), SRY-box transcription factor 2 (SOX2), and mutant p53-R175H, underscoring its universality and versatility. To specifically deliver ZATACs into cancer cells, we further develop DNA three-way junction-based ZATACs (3WJ-ZATACs) by integrating an additional aptamer that selectively recognizes the protein overexpressed on the surface of cancer cells. The 3WJ-ZATACs demonstrate in vivo tumor-specific distribution and achieve dual-target degradation, thereby suppressing tumor growth without causing noticeable toxicity. In summary, ZATACs represent a general, modular, and straightforward platform for targeted protein degradation, offering insights into the potential of other untapped E3 ligases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信