Sophie Staar, Miquel Estévez-Gay, Felix Kaspar, Sílvia Osuna, Anett Schallmey
{"title":"Engineering of Conserved Sequence Motif 1 Residues in Halohydrin Dehalogenase HheC Simultaneously Enhances Activity, Stability, and Enantioselectivity","authors":"Sophie Staar, Miquel Estévez-Gay, Felix Kaspar, Sílvia Osuna, Anett Schallmey","doi":"10.1021/acscatal.5c00819","DOIUrl":null,"url":null,"abstract":"Halohydrin dehalogenases (HHDHs) are powerful enzymes for the asymmetric diversification of oxyfunctionalized synthons. They feature two characteristic sequence motifs that distinguish them from homologous short-chain dehydrogenases and reductases. Sequence motif 1, carrying a conserved threonine, glycine, and a central aromatic residue, lines the nucleophile binding pocket of HHDHs. It could therefore impact nucleophile binding and presumably also the activity of the enzymes. However, experimental evidence supporting this theory is largely missing. Herein, we systematically studied the mutability of the three conserved motif 1 residues as well as their resulting impact on enzyme activity, stability, and selectivity in two model HHDHs: HheC from <i>Agrobacterium radiobacter</i> AD1 and HheG from <i>Ilumatobacter coccineus</i>. In both HheC and HheG, the conserved threonine and glycine tolerated mutations to only structurally similar amino acids. In contrast, the central aromatic (i.e., phenylalanine or tyrosine) residue of motif 1 demonstrated much higher variability in HheC. Remarkably, some of these variants featured drastically altered activity, stability, and selectivity characteristics. For instance, variant HheC F12Y displayed up to 5-fold increased specific activity in various epoxide ring opening and dehalogenation reactions as well as enhanced enantioselectivity (e.g., an <i>E</i>-value of 74 in the azidolysis of epichlorohydrin compared to <i>E</i> = 22 for HheC wild type) while also exhibiting a 10 K higher apparent melting temperature. QM and MD simulations support the experimentally observed activity increase of HheC F12Y and reveal alterations in the hydrogen bonding network within the active site. As such, our results demonstrate that multiple enzyme properties of HHDHs can be altered through the targeted mutagenesis of conserved motif 1 residues. In addition, this work illustrates that motif 1 plays vital roles beyond nucleophile binding by impacting the solubility and stability properties. These insights advance our understanding of HHDH active sites and will facilitate their future engineering.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"32 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.5c00819","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Halohydrin dehalogenases (HHDHs) are powerful enzymes for the asymmetric diversification of oxyfunctionalized synthons. They feature two characteristic sequence motifs that distinguish them from homologous short-chain dehydrogenases and reductases. Sequence motif 1, carrying a conserved threonine, glycine, and a central aromatic residue, lines the nucleophile binding pocket of HHDHs. It could therefore impact nucleophile binding and presumably also the activity of the enzymes. However, experimental evidence supporting this theory is largely missing. Herein, we systematically studied the mutability of the three conserved motif 1 residues as well as their resulting impact on enzyme activity, stability, and selectivity in two model HHDHs: HheC from Agrobacterium radiobacter AD1 and HheG from Ilumatobacter coccineus. In both HheC and HheG, the conserved threonine and glycine tolerated mutations to only structurally similar amino acids. In contrast, the central aromatic (i.e., phenylalanine or tyrosine) residue of motif 1 demonstrated much higher variability in HheC. Remarkably, some of these variants featured drastically altered activity, stability, and selectivity characteristics. For instance, variant HheC F12Y displayed up to 5-fold increased specific activity in various epoxide ring opening and dehalogenation reactions as well as enhanced enantioselectivity (e.g., an E-value of 74 in the azidolysis of epichlorohydrin compared to E = 22 for HheC wild type) while also exhibiting a 10 K higher apparent melting temperature. QM and MD simulations support the experimentally observed activity increase of HheC F12Y and reveal alterations in the hydrogen bonding network within the active site. As such, our results demonstrate that multiple enzyme properties of HHDHs can be altered through the targeted mutagenesis of conserved motif 1 residues. In addition, this work illustrates that motif 1 plays vital roles beyond nucleophile binding by impacting the solubility and stability properties. These insights advance our understanding of HHDH active sites and will facilitate their future engineering.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.