Maxime Pierre, Marcos Samudio, Siavash Ghabezloo, Patrick Dangla
{"title":"Modelling the poromechanical behaviour of class G cement paste: A multiphysics approach from early age to hardened state","authors":"Maxime Pierre, Marcos Samudio, Siavash Ghabezloo, Patrick Dangla","doi":"10.1016/j.cemconres.2025.107852","DOIUrl":null,"url":null,"abstract":"<div><div>Modelling cement-based materials from the early-age to the hardened state is crucial in numerous applications such as deep well cementing or 3D printing, which require comprehensive modelling of multiphysics couplings. To answer these requirements, a thermodynamically consistent time-dependent constitutive model based on the extent of hydration is developed in the framework of thermoporomechanics of partially saturated materials. Using minimal fitting, complex undrained oedometric tests on hydrating cement paste, combining effects of hydration progress, pore pressure evolution, elastic, viscous, and plastic deformations, are well reproduced numerically. In particular, the impact of early-age loading on the behaviour at a subsequent age, paramount in oil-well applications to understanding the consequences of pressurising the casing when the cement sheath is partially hydrated, is explained and quantitatively reproduced.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"193 ","pages":"Article 107852"},"PeriodicalIF":10.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625000717","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Modelling cement-based materials from the early-age to the hardened state is crucial in numerous applications such as deep well cementing or 3D printing, which require comprehensive modelling of multiphysics couplings. To answer these requirements, a thermodynamically consistent time-dependent constitutive model based on the extent of hydration is developed in the framework of thermoporomechanics of partially saturated materials. Using minimal fitting, complex undrained oedometric tests on hydrating cement paste, combining effects of hydration progress, pore pressure evolution, elastic, viscous, and plastic deformations, are well reproduced numerically. In particular, the impact of early-age loading on the behaviour at a subsequent age, paramount in oil-well applications to understanding the consequences of pressurising the casing when the cement sheath is partially hydrated, is explained and quantitatively reproduced.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.