Shu-Yang Yu, Xiao-Yan Wang, Xiu-Li Sun, Yanshan Gao, Yanan Zhao, Xiao-Shan Ning, Gang Ji, Yuan Lu, Jie Yang, Zhi-Pan Liu, Yong Tang
{"title":"Cyano-functionalized polyethylenes from ethylene/acrylamide copolymerization","authors":"Shu-Yang Yu, Xiao-Yan Wang, Xiu-Li Sun, Yanshan Gao, Yanan Zhao, Xiao-Shan Ning, Gang Ji, Yuan Lu, Jie Yang, Zhi-Pan Liu, Yong Tang","doi":"10.1038/s41467-025-57489-z","DOIUrl":null,"url":null,"abstract":"<p>Synthesizing functionalized polyethylenes via ethylene coordination copolymerization with fundamental low-cost vinyl polar monomers provides a very attractive approach. However, it is also very challenging as the functional group (FG) to be introduced onto the polyolefin chain is directly derived from the corresponding vinyl polar monomers (CH<sub>2</sub> = CH-FG), which often cause catalyst poisoning due to the FG coordination to active metal center and β-X elimination during catalysis, etc. It is especially true for the synthesis of cyano-functionalized polyethylenes (PEs) via ethylene/acrylonitrile copolymerization, which can only rely on Pd catalysis with low activity. Here we present an approach utilizing binuclear Ni catalysis for ethylene/acrylamide copolymerization and the synthesis of cyano-functionalized PEs (>99%) with great activity up to 4.1 × 10<sup>6</sup> g/(mol cat·h). Extensive polymer characterizations (NMR, GPC, model experiments, etc) confirm significant chain transfer and the conversion of amide to nitrile during catalysis. Mechanistic investigations, including comprehensive control experiments, deuterium labeling and computational studies, support an isomerization-mediated chain transfer polymerization (ICTP) mechanistic pathway, which include tandem acrylamide enchainment, amido group conversion into CN group, and active catalyst regeneration by Et<sub>2</sub>AlCl. Catalyst poisoning could be largely circumvented by this catalyst system.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"124 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57489-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Synthesizing functionalized polyethylenes via ethylene coordination copolymerization with fundamental low-cost vinyl polar monomers provides a very attractive approach. However, it is also very challenging as the functional group (FG) to be introduced onto the polyolefin chain is directly derived from the corresponding vinyl polar monomers (CH2 = CH-FG), which often cause catalyst poisoning due to the FG coordination to active metal center and β-X elimination during catalysis, etc. It is especially true for the synthesis of cyano-functionalized polyethylenes (PEs) via ethylene/acrylonitrile copolymerization, which can only rely on Pd catalysis with low activity. Here we present an approach utilizing binuclear Ni catalysis for ethylene/acrylamide copolymerization and the synthesis of cyano-functionalized PEs (>99%) with great activity up to 4.1 × 106 g/(mol cat·h). Extensive polymer characterizations (NMR, GPC, model experiments, etc) confirm significant chain transfer and the conversion of amide to nitrile during catalysis. Mechanistic investigations, including comprehensive control experiments, deuterium labeling and computational studies, support an isomerization-mediated chain transfer polymerization (ICTP) mechanistic pathway, which include tandem acrylamide enchainment, amido group conversion into CN group, and active catalyst regeneration by Et2AlCl. Catalyst poisoning could be largely circumvented by this catalyst system.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.