Nilo Mata-Cervera, Zhaoyang Xie, Chi Li, Haoyi Yu, Haoran Ren, Yijie Shen, Stefan A. Maier
{"title":"Tailoring propagation-invariant topology of optical skyrmions with dielectric metasurfaces","authors":"Nilo Mata-Cervera, Zhaoyang Xie, Chi Li, Haoyi Yu, Haoran Ren, Yijie Shen, Stefan A. Maier","doi":"10.1515/nanoph-2024-0736","DOIUrl":null,"url":null,"abstract":"Optical Stokes skyrmions represent an emerging class of structured light characterized by intricate topological polarization textures in the beam’s transverse plane. Traditional methods for generating Stokes skyrmions rely on bulky optical setups, driving significant interests in compact, single-device solutions. However, existing approaches fail to ensure propagation-invariant topology, an imperative requirement for advancing applications in this field. In this paper we address this fundamental challenge with a metasurface design based on structural birefringence and geometric phase which manipulates light in dynamic phase iso-curves, achieving arbitrary co-polarization to cross-polarization conversion while maintaining a constant dynamic phase. This design enables propagation-invariant topological features of optical skyrmions produced by a single generation device. Our framework offers a compact platform for shaping topologically stable optical skyrmions, which may stimulate their applications for long-range optical information transfer.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"213 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0736","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical Stokes skyrmions represent an emerging class of structured light characterized by intricate topological polarization textures in the beam’s transverse plane. Traditional methods for generating Stokes skyrmions rely on bulky optical setups, driving significant interests in compact, single-device solutions. However, existing approaches fail to ensure propagation-invariant topology, an imperative requirement for advancing applications in this field. In this paper we address this fundamental challenge with a metasurface design based on structural birefringence and geometric phase which manipulates light in dynamic phase iso-curves, achieving arbitrary co-polarization to cross-polarization conversion while maintaining a constant dynamic phase. This design enables propagation-invariant topological features of optical skyrmions produced by a single generation device. Our framework offers a compact platform for shaping topologically stable optical skyrmions, which may stimulate their applications for long-range optical information transfer.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.