Attosecond Transient Grating Spectroscopy with Near-Infrared Grating Pulses and an Extreme Ultraviolet Diffracted Probe

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Rafael Quintero-Bermudez, Lauren Drescher, Vincent Eggers, Kevin Gulu Xiong, Stephen R. Leone
{"title":"Attosecond Transient Grating Spectroscopy with Near-Infrared Grating Pulses and an Extreme Ultraviolet Diffracted Probe","authors":"Rafael Quintero-Bermudez, Lauren Drescher, Vincent Eggers, Kevin Gulu Xiong, Stephen R. Leone","doi":"10.1021/acsphotonics.4c02545","DOIUrl":null,"url":null,"abstract":"Transient grating spectroscopy has become a mainstay among metal and semiconductor characterization techniques. Here, we extend the technique toward the shortest achievable time scales by using tabletop high-harmonic generation of attosecond extreme ultraviolet (XUV) pulses that diffract from transient gratings generated with sub-5 fs near-infrared (NIR) pulses. We demonstrate the power of attosecond transient grating spectroscopy (ATGS) by investigating the ultrafast photoexcited dynamics in an Sb semimetal thin film. ATGS provides an element-specific, background-free signal unfettered by spectral congestion, in contrast to transient absorption spectroscopy. With ATGS measurements in Sb polycrystalline thin films, we observe the generation of coherent phonons and investigate the lattice and carrier dynamics. Among the latter processes, we extract carrier thermalization, hot carrier cooling, and electron–hole recombination, which are on the order of 20 fs, 50 fs, and 2 ps time scales, respectively. Furthermore, the simultaneous collection of transient absorption and transient grating data allows us to extract the total complex dielectric constant in the sample dynamics with a single measurement, including the real-valued refractive index, from which we are also able to investigate carrier–phonon interactions and longer-lived phonon dynamics. The outlined experimental technique expands the capabilities of transient grating spectroscopy and attosecond spectroscopies by providing a wealth of information concerning carrier and lattice dynamics with an element-selective technique at the shortest achievable time scales.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"39 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c02545","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transient grating spectroscopy has become a mainstay among metal and semiconductor characterization techniques. Here, we extend the technique toward the shortest achievable time scales by using tabletop high-harmonic generation of attosecond extreme ultraviolet (XUV) pulses that diffract from transient gratings generated with sub-5 fs near-infrared (NIR) pulses. We demonstrate the power of attosecond transient grating spectroscopy (ATGS) by investigating the ultrafast photoexcited dynamics in an Sb semimetal thin film. ATGS provides an element-specific, background-free signal unfettered by spectral congestion, in contrast to transient absorption spectroscopy. With ATGS measurements in Sb polycrystalline thin films, we observe the generation of coherent phonons and investigate the lattice and carrier dynamics. Among the latter processes, we extract carrier thermalization, hot carrier cooling, and electron–hole recombination, which are on the order of 20 fs, 50 fs, and 2 ps time scales, respectively. Furthermore, the simultaneous collection of transient absorption and transient grating data allows us to extract the total complex dielectric constant in the sample dynamics with a single measurement, including the real-valued refractive index, from which we are also able to investigate carrier–phonon interactions and longer-lived phonon dynamics. The outlined experimental technique expands the capabilities of transient grating spectroscopy and attosecond spectroscopies by providing a wealth of information concerning carrier and lattice dynamics with an element-selective technique at the shortest achievable time scales.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信