Xin Fang, Dianlong Yu, Jihong Wen, Yifan Dai, Matthew R. Begley, Huajian Gao, Peter Gumbsch
{"title":"Large recoverable elastic energy in chiral metamaterials via twist buckling","authors":"Xin Fang, Dianlong Yu, Jihong Wen, Yifan Dai, Matthew R. Begley, Huajian Gao, Peter Gumbsch","doi":"10.1038/s41586-025-08658-z","DOIUrl":null,"url":null,"abstract":"Mechanical metamaterials with high recoverable elastic energy density, which we refer to as high-enthalpy elastic metamaterials, can offer many enhanced properties, including efficient mechanical energy storage1,2, load-bearing capability, impact resistance and motion agility. These qualities make them ideal for lightweight, miniaturized and multi-functional structures3–8. However, achieving high enthalpy is challenging, as it requires combining conflicting properties: high stiffness, high strength and large recoverable strain9–11. Here, to address this challenge, we construct high-enthalpy elastic metamaterials from freely rotatable chiral metacells. Compared with existing non-chiral lattices, the non-optimized chiral metamaterials simultaneously maintain high stiffness, sustain larger recoverable strain, offer a wider buckling plateau, improve the buckling strength by 5–10 times, enhance enthalpy by 2–160 times and increase energy per mass by 2–32 times. These improvements arise from torsional buckling deformation that is triggered by chirality and is absent in conventional metamaterials. This deformation mode stores considerable additional energy while having a minimal impact on peak stresses that define material failure. Our findings identify a mechanism and provide insight into the design of metamaterials and structures with high mechanical energy storage capacity, a fundamental and general problem of broad engineering interest. High-enthalpy elastic metamaterials constructed from freely rotatable chiral metacells have high stiffness, large recoverable strain and improved buckling strength.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"639 8055","pages":"639-645"},"PeriodicalIF":48.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41586-025-08658-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-08658-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanical metamaterials with high recoverable elastic energy density, which we refer to as high-enthalpy elastic metamaterials, can offer many enhanced properties, including efficient mechanical energy storage1,2, load-bearing capability, impact resistance and motion agility. These qualities make them ideal for lightweight, miniaturized and multi-functional structures3–8. However, achieving high enthalpy is challenging, as it requires combining conflicting properties: high stiffness, high strength and large recoverable strain9–11. Here, to address this challenge, we construct high-enthalpy elastic metamaterials from freely rotatable chiral metacells. Compared with existing non-chiral lattices, the non-optimized chiral metamaterials simultaneously maintain high stiffness, sustain larger recoverable strain, offer a wider buckling plateau, improve the buckling strength by 5–10 times, enhance enthalpy by 2–160 times and increase energy per mass by 2–32 times. These improvements arise from torsional buckling deformation that is triggered by chirality and is absent in conventional metamaterials. This deformation mode stores considerable additional energy while having a minimal impact on peak stresses that define material failure. Our findings identify a mechanism and provide insight into the design of metamaterials and structures with high mechanical energy storage capacity, a fundamental and general problem of broad engineering interest. High-enthalpy elastic metamaterials constructed from freely rotatable chiral metacells have high stiffness, large recoverable strain and improved buckling strength.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.