Rosalind Williams-Carrier, Prakitchai Chotewutmontri, Sarah Perkel, Margarita Rojas, Susan Belcher, Alice Barkan
{"title":"The psbA ORF acts in cis to toggle HCF173 from an activator to a repressor for light-regulated psbA translation in plants","authors":"Rosalind Williams-Carrier, Prakitchai Chotewutmontri, Sarah Perkel, Margarita Rojas, Susan Belcher, Alice Barkan","doi":"10.1093/plcell/koaf047","DOIUrl":null,"url":null,"abstract":"The D1 subunit of photosystem II is subject to photooxidative damage. Photodamaged D1 must be replaced with nascent D1 to maintain photosynthesis. In plant chloroplasts, D1 photodamage regulates D1 synthesis by modulating translation initiation on psbA mRNA encoding D1. The underlying mechanisms are unknown. Analyses of reporter constructs in transplastomic tobacco showed that the psbA translational activator HCF173 activates via a cis-element in the psbA 5'-UTR. However, the psbA UTRs are not sufficient to program light-regulated translation. Instead, the psbA open reading frame represses translation initiation in cis, and D1 photodamage relieves this repression. HCF173 remains bound to the psbA 5'-UTR in the dark and truncation of HCF173 prevents repression in the dark, implicating HCF173 as a mediator of repression. We propose a model that accounts for these and prior observations, which is informed by structures of the Complex I assembly factor CIA30/NDUFAF1. We posit that D1 photodamage relieves a repressive cotranslational interaction between nascent D1 and HCF173's CIA30 domain, that the photosystem II assembly factor HCF136 promotes this repressive interaction, and that these events toggle HCF173 between activating and repressive conformations on psbA mRNA. These findings elucidate a translational rheostat that optimizes photosynthesis in response to shifting light conditions.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The D1 subunit of photosystem II is subject to photooxidative damage. Photodamaged D1 must be replaced with nascent D1 to maintain photosynthesis. In plant chloroplasts, D1 photodamage regulates D1 synthesis by modulating translation initiation on psbA mRNA encoding D1. The underlying mechanisms are unknown. Analyses of reporter constructs in transplastomic tobacco showed that the psbA translational activator HCF173 activates via a cis-element in the psbA 5'-UTR. However, the psbA UTRs are not sufficient to program light-regulated translation. Instead, the psbA open reading frame represses translation initiation in cis, and D1 photodamage relieves this repression. HCF173 remains bound to the psbA 5'-UTR in the dark and truncation of HCF173 prevents repression in the dark, implicating HCF173 as a mediator of repression. We propose a model that accounts for these and prior observations, which is informed by structures of the Complex I assembly factor CIA30/NDUFAF1. We posit that D1 photodamage relieves a repressive cotranslational interaction between nascent D1 and HCF173's CIA30 domain, that the photosystem II assembly factor HCF136 promotes this repressive interaction, and that these events toggle HCF173 between activating and repressive conformations on psbA mRNA. These findings elucidate a translational rheostat that optimizes photosynthesis in response to shifting light conditions.