Adaptive self-triggered distributed filtering over sensor networks with partially unknown probabilities

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Zhongqi Li, Fengzeng Zhu, Ancai Zhang, Xiao Liang
{"title":"Adaptive self-triggered distributed filtering over sensor networks with partially unknown probabilities","authors":"Zhongqi Li,&nbsp;Fengzeng Zhu,&nbsp;Ancai Zhang,&nbsp;Xiao Liang","doi":"10.1016/j.isatra.2025.02.006","DOIUrl":null,"url":null,"abstract":"<div><div>The current work presents a distributed estimation approach with a topology-switching structure and introduces an adaptive self-triggered strategy (ASTS) to minimize energy consumption during inter-node communication. In the filter design, the network’s communication topology is modeled as a time-varying process, with switching governed by a homogeneous Markov chain and a probabilistic transition matrix containing partially unknown data. Filter design feasibility is verified using Lyapunov stability theory and linear matrix inequality (LMI) method, which are used to determine the filter parameters. Numerical simulation and practical experiment with a continuous stirred tank reactor validate the proposed approach.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"159 ","pages":"Pages 113-120"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057825000953","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The current work presents a distributed estimation approach with a topology-switching structure and introduces an adaptive self-triggered strategy (ASTS) to minimize energy consumption during inter-node communication. In the filter design, the network’s communication topology is modeled as a time-varying process, with switching governed by a homogeneous Markov chain and a probabilistic transition matrix containing partially unknown data. Filter design feasibility is verified using Lyapunov stability theory and linear matrix inequality (LMI) method, which are used to determine the filter parameters. Numerical simulation and practical experiment with a continuous stirred tank reactor validate the proposed approach.
部分未知概率传感器网络的自适应自触发分布式滤波。
目前的工作提出了一种具有拓扑交换结构的分布式估计方法,并引入了一种自适应自触发策略(ast)来最小化节点间通信期间的能量消耗。在滤波器设计中,网络的通信拓扑被建模为时变过程,交换由齐次马尔可夫链和包含部分未知数据的概率转移矩阵控制。利用李雅普诺夫稳定性理论和线性矩阵不等式(LMI)方法验证了滤波器设计的可行性,并利用这两种方法确定了滤波器参数。数值模拟和连续搅拌槽式反应器的实际实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信