Insights into therapeutic potential and practical applications of natural toxins from poisonous mushrooms.

Human & experimental toxicology Pub Date : 2025-01-01 Epub Date: 2025-03-11 DOI:10.1177/09603271251323134
Tharuka Wijesekara, Baojun Xu
{"title":"Insights into therapeutic potential and practical applications of natural toxins from poisonous mushrooms.","authors":"Tharuka Wijesekara, Baojun Xu","doi":"10.1177/09603271251323134","DOIUrl":null,"url":null,"abstract":"<p><p>IntroductionMushrooms, belonging to the phyla Ascomycota and Basidiomycota, comprise approximately 14,000 known species, among which a small fraction are toxic. While toxic mushrooms are primarily associated with adverse health effects, recent research highlights their potential as sources of bioactive compounds with promising therapeutic applications.MethodsA systematic review was conducted using four major electronic databases: Web of Science, Google Scholar, PubMed, and ScienceDirect. The literature search, completed on July 1, 2024, utilized keywords including \"Poisonous mushrooms,\" \"Mushroom toxins,\" \"Mycotoxins,\" \"Beta-glucans,\" \"Psilocybin,\" and \"Therapeutic applications.\" Articles were selected based on specific inclusion criteria, focusing on studies investigating the biochemical, toxicological, and pharmacological properties of toxic mushroom compounds. Studies unrelated to mushrooms, non-peer-reviewed sources, or those with outdated or incomplete data were excluded.ResultsThis review examines key toxic mushroom compounds such as amanitins, phallotoxins, ibotenic acid, muscimol, orellanine, and gyromitrin, emphasizing their biosynthesis, structural features, and health effects. Despite their toxicity, compounds like beta-glucans, polysaccharides, lectins, and psilocybin exhibit immune-modulating, anticancer, and neuroprotective properties. These bioactive compounds have shown promise in targeting cancer stem cells and enhancing neurotransmitter activity, positioning them as potential therapeutic agents.DiscussionUnderstanding the therapeutic potential of toxic mushroom-derived bioactive compounds bridges toxicology and pharmacology, offering novel avenues for drug discovery. Comparative analysis with existing treatments highlights their unique advantages in modern medicine.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"44 ","pages":"9603271251323134"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & experimental toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09603271251323134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

IntroductionMushrooms, belonging to the phyla Ascomycota and Basidiomycota, comprise approximately 14,000 known species, among which a small fraction are toxic. While toxic mushrooms are primarily associated with adverse health effects, recent research highlights their potential as sources of bioactive compounds with promising therapeutic applications.MethodsA systematic review was conducted using four major electronic databases: Web of Science, Google Scholar, PubMed, and ScienceDirect. The literature search, completed on July 1, 2024, utilized keywords including "Poisonous mushrooms," "Mushroom toxins," "Mycotoxins," "Beta-glucans," "Psilocybin," and "Therapeutic applications." Articles were selected based on specific inclusion criteria, focusing on studies investigating the biochemical, toxicological, and pharmacological properties of toxic mushroom compounds. Studies unrelated to mushrooms, non-peer-reviewed sources, or those with outdated or incomplete data were excluded.ResultsThis review examines key toxic mushroom compounds such as amanitins, phallotoxins, ibotenic acid, muscimol, orellanine, and gyromitrin, emphasizing their biosynthesis, structural features, and health effects. Despite their toxicity, compounds like beta-glucans, polysaccharides, lectins, and psilocybin exhibit immune-modulating, anticancer, and neuroprotective properties. These bioactive compounds have shown promise in targeting cancer stem cells and enhancing neurotransmitter activity, positioning them as potential therapeutic agents.DiscussionUnderstanding the therapeutic potential of toxic mushroom-derived bioactive compounds bridges toxicology and pharmacology, offering novel avenues for drug discovery. Comparative analysis with existing treatments highlights their unique advantages in modern medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信