Single-molecule techniques in studying the molecular mechanisms of DNA synapsis in non-homologous end-joining repair.

Yuhao Jiang, Chao Zhao, Chenyang Zhang, Weilin Li, Di Liu, Bailin Zhao
{"title":"Single-molecule techniques in studying the molecular mechanisms of DNA synapsis in non-homologous end-joining repair.","authors":"Yuhao Jiang, Chao Zhao, Chenyang Zhang, Weilin Li, Di Liu, Bailin Zhao","doi":"10.52601/bpr.2024.240043","DOIUrl":null,"url":null,"abstract":"<p><p>DNA double-strand breaks (DSBs) are the most severe form of DNA damage, primarily repaired by the non-homologous end joining (NHEJ) pathway. A critical step in this process is DNA synapsis, where the two broken ends are brought together to facilitate timely repair. Deficiencies in NHEJ synapsis can lead to improper DNA end configurations, potentially resulting in chromosomal translocations. NHEJ synapsis is a highly dynamic, multi-protein mediated assembly process. Recent advances in single-molecule techniques have led to significant progress in understanding the molecular mechanisms driving NHEJ synapsis. In this review, we summarize single-molecule methods developed for studying NHEJ synapsis, with a particular focus on the single-molecule fluorescence resonance energy transfer (smFRET) technique. We discuss the various molecular mechanisms of NHEJ synapsis uncovered through these studies and explore the coupling between synapsis and other steps in NHEJ. Additionally, we highlight the strategies, limitations, and future directions for single-molecule studies of NHEJ synapsis.</p>","PeriodicalId":93906,"journal":{"name":"Biophysics reports","volume":"11 1","pages":"46-55"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891076/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52601/bpr.2024.240043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

DNA double-strand breaks (DSBs) are the most severe form of DNA damage, primarily repaired by the non-homologous end joining (NHEJ) pathway. A critical step in this process is DNA synapsis, where the two broken ends are brought together to facilitate timely repair. Deficiencies in NHEJ synapsis can lead to improper DNA end configurations, potentially resulting in chromosomal translocations. NHEJ synapsis is a highly dynamic, multi-protein mediated assembly process. Recent advances in single-molecule techniques have led to significant progress in understanding the molecular mechanisms driving NHEJ synapsis. In this review, we summarize single-molecule methods developed for studying NHEJ synapsis, with a particular focus on the single-molecule fluorescence resonance energy transfer (smFRET) technique. We discuss the various molecular mechanisms of NHEJ synapsis uncovered through these studies and explore the coupling between synapsis and other steps in NHEJ. Additionally, we highlight the strategies, limitations, and future directions for single-molecule studies of NHEJ synapsis.

非同源末端连接修复中DNA突触分子机制的单分子研究。
DNA双链断裂(DSBs)是最严重的DNA损伤形式,主要通过非同源末端连接(NHEJ)途径修复。这个过程的关键一步是DNA突触,在这里,两个断裂的末端被带到一起,以促进及时修复。缺乏NHEJ突触可导致不正确的DNA末端配置,潜在地导致染色体易位。NHEJ突触是一个高度动态的、多蛋白介导的组装过程。单分子技术的最新进展在理解驱动NHEJ突触的分子机制方面取得了重大进展。在这篇综述中,我们总结了用于研究NHEJ突触的单分子方法,特别是单分子荧光共振能量转移(smFRET)技术。我们讨论了通过这些研究发现的NHEJ突触的各种分子机制,并探讨了突触与NHEJ其他步骤之间的耦合。此外,我们强调了NHEJ突触单分子研究的策略、局限性和未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信