Validation of markerless video-based gait analysis using pose estimation in toddlers with and without neurodevelopmental disorders.

IF 3.2 Q1 HEALTH CARE SCIENCES & SERVICES
Frontiers in digital health Pub Date : 2025-02-25 eCollection Date: 2025-01-01 DOI:10.3389/fdgth.2025.1542012
Jeffrey T Anderson, Jan Stenum, Ryan T Roemmich, Rujuta B Wilson
{"title":"Validation of markerless video-based gait analysis using pose estimation in toddlers with and without neurodevelopmental disorders.","authors":"Jeffrey T Anderson, Jan Stenum, Ryan T Roemmich, Rujuta B Wilson","doi":"10.3389/fdgth.2025.1542012","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The onset of locomotion is a critical motor milestone in early childhood and increases engagement with the environment. Toddlers with neurodevelopmental disabilities often have atypical motor development that impacts later outcomes. Video-based gait analysis using pose estimation offers an alternative to standardized motor assessments which are subjective and difficult to ascertain in some populations, yet very little work has been done to determine its accuracy in young children. To fill this gap, this study aims to assess the feasibility and accuracy of pose estimation for gait analysis in children with a range of developmental levels.</p><p><strong>Methods: </strong>We analyzed the overground gait of 112 toddlers (M: 30 months, SD: 8 months) with and without developmental disabilities using the ProtoKinetics Zeno Walkway system. Simultaneously recorded videos were processed in OpenPose to perform pose estimation and a custom MATLAB workflow to calculate average spatiotemporal gait parameters. Pearson correlations were used to compare OpenPose with the Zeno Walkway for velocity, step length, and step time. A Bland-Altman analysis (difference vs. average) was used to assess the agreement between methodologies and determine the difference of means. Developmental levels were assessed using the Mullen Scales of Early Learning.</p><p><strong>Results: </strong>Our analysis included children with autism (<i>n</i> = 77), non-autism developmental concerns (<i>n</i> = 6), tuberous sclerosis complex (<i>n</i> = 13), 22q deletion (<i>n</i> = 1), and typical development (<i>n</i> = 15). Mullen early learning composite scores ranged from 49 to 95 (m = 80.91, sd = 26.68). Velocity (r = 0.87, <i>p</i> < 0.0001), step length (r = 0.79, <i>p</i> < 0.0001), and step time (r = 0.96, <i>p</i> < 0.0001) were all highly correlated between OpenPose and the Zeno Walkway, with an absolute difference of means of 0.04 m/s, 0.03 m, and 0.01 s, respectively.</p><p><strong>Discussion: </strong>Our results suggest that video-based gait analysis using pose estimation is accurate in toddlers with a range of developmental levels. Video-based gait analysis is low cost and can be implemented for remote data collection in natural environments such as a participant's home. These advantages open possibilities for using repeated measures to increase our knowledge of how gait ability changes over time in pediatric populations and improve clinical screening tools, particularly in those with neurodevelopmental disabilities who exhibit motor impairments.</p>","PeriodicalId":73078,"journal":{"name":"Frontiers in digital health","volume":"7 ","pages":"1542012"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893606/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdgth.2025.1542012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The onset of locomotion is a critical motor milestone in early childhood and increases engagement with the environment. Toddlers with neurodevelopmental disabilities often have atypical motor development that impacts later outcomes. Video-based gait analysis using pose estimation offers an alternative to standardized motor assessments which are subjective and difficult to ascertain in some populations, yet very little work has been done to determine its accuracy in young children. To fill this gap, this study aims to assess the feasibility and accuracy of pose estimation for gait analysis in children with a range of developmental levels.

Methods: We analyzed the overground gait of 112 toddlers (M: 30 months, SD: 8 months) with and without developmental disabilities using the ProtoKinetics Zeno Walkway system. Simultaneously recorded videos were processed in OpenPose to perform pose estimation and a custom MATLAB workflow to calculate average spatiotemporal gait parameters. Pearson correlations were used to compare OpenPose with the Zeno Walkway for velocity, step length, and step time. A Bland-Altman analysis (difference vs. average) was used to assess the agreement between methodologies and determine the difference of means. Developmental levels were assessed using the Mullen Scales of Early Learning.

Results: Our analysis included children with autism (n = 77), non-autism developmental concerns (n = 6), tuberous sclerosis complex (n = 13), 22q deletion (n = 1), and typical development (n = 15). Mullen early learning composite scores ranged from 49 to 95 (m = 80.91, sd = 26.68). Velocity (r = 0.87, p < 0.0001), step length (r = 0.79, p < 0.0001), and step time (r = 0.96, p < 0.0001) were all highly correlated between OpenPose and the Zeno Walkway, with an absolute difference of means of 0.04 m/s, 0.03 m, and 0.01 s, respectively.

Discussion: Our results suggest that video-based gait analysis using pose estimation is accurate in toddlers with a range of developmental levels. Video-based gait analysis is low cost and can be implemented for remote data collection in natural environments such as a participant's home. These advantages open possibilities for using repeated measures to increase our knowledge of how gait ability changes over time in pediatric populations and improve clinical screening tools, particularly in those with neurodevelopmental disabilities who exhibit motor impairments.

利用姿势估计对有和无神经发育障碍的幼儿进行无标记视频步态分析的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信