AI-guided framework for the design of materials and devices for magnetic-tunnel-junction-based true random number generators.

Karan P Patel, Andrew Maicke, Jared Arzate, Jaesuk Kwon, J Darby Smith, James B Aimone, Jean Anne C Incorvia, Suma G Cardwell, Catherine D Schuman
{"title":"AI-guided framework for the design of materials and devices for magnetic-tunnel-junction-based true random number generators.","authors":"Karan P Patel, Andrew Maicke, Jared Arzate, Jaesuk Kwon, J Darby Smith, James B Aimone, Jean Anne C Incorvia, Suma G Cardwell, Catherine D Schuman","doi":"10.1038/s44172-025-00376-8","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging devices, such as magnetic tunnel junctions, are key for energy-efficient, performant future computing systems. However, designing devices with the desirable specification and performance for these applications is often found to be time-consuming and non-trivial. Here, we investigate the design and optimization of spin-orbit torque and spin transfer torque magnetic tunnel junction models as the probabilistic devices for true random number generation. We leverage reinforcement learning and evolutionary optimization to vary key device and material properties of the various device models for stochastic operation. Our artificial-intelligence-guided codesign methods generated different candidate devices capable of generating stochastic samples for a desired probability distribution, while also minimizing energy usage for the devices. This framework can also be applied to other devices and applications.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"43"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00376-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging devices, such as magnetic tunnel junctions, are key for energy-efficient, performant future computing systems. However, designing devices with the desirable specification and performance for these applications is often found to be time-consuming and non-trivial. Here, we investigate the design and optimization of spin-orbit torque and spin transfer torque magnetic tunnel junction models as the probabilistic devices for true random number generation. We leverage reinforcement learning and evolutionary optimization to vary key device and material properties of the various device models for stochastic operation. Our artificial-intelligence-guided codesign methods generated different candidate devices capable of generating stochastic samples for a desired probability distribution, while also minimizing energy usage for the devices. This framework can also be applied to other devices and applications.

为基于磁隧道结的真随机数生成器设计材料和设备的人工智能指导框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信