MoodMon: novel optimization of bipolar disorder monitoring through patient-driven voice parameter submission and AI technology.

Postepy psychiatrii neurologii Pub Date : 2024-12-01 Epub Date: 2025-02-25 DOI:10.5114/ppn.2024.147100
Marlena Sokół-Szawłowska, Olga Kamińska, Małgorzata Sochacka
{"title":"MoodMon: novel optimization of bipolar disorder monitoring through patient-driven voice parameter submission and AI technology.","authors":"Marlena Sokół-Szawłowska, Olga Kamińska, Małgorzata Sochacka","doi":"10.5114/ppn.2024.147100","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Behavioral data collected from smartphones can assist artificial intelligence (AI) in assessing and predicting fluctuations in mental states in patients with bipolar disorder (BD). In Poland, the MoodMon online system is used to integrate passive and active data, including voice parameters, for analysis and the issue of alerts based on changes in individual's mental state. The study aims to explore whether active engagement of the patient enhances the efficacy of the advanced MoodMon tool. This clinical trial is embedded in a broader research initiative.</p><p><strong>Methods: </strong>Methodologically, smartphones were used to automatically collect daily activity data from wristbands and phones of 75 BD patients. Clinical evaluations, using the Hamilton Depression and Young Mania Rating Scales were conducted via a web app, regular visits, calls, or system-initiated contacts after alerts. The MoodMon system, trained on patient data, was compared against clinical evaluations, successfully predicting mental states.</p><p><strong>Results: </strong>Results showed high alert accuracy: true positive ratio (TPR) at 86.6% (sensitivity) and true negative ratio (TNR) at 98.59% (specificity). Active patient voice data submissions notably improved the prediction of changes or stability in mental states.</p><p><strong>Conclusions: </strong>Active patient participation in data submission enhances MoodMon's effectiveness as an AI-driven monitoring tool for BD. This underscores the potential of behavioral markers and mobile health applications in mental health care.</p>","PeriodicalId":74481,"journal":{"name":"Postepy psychiatrii neurologii","volume":"33 1","pages":"230-240"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891757/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postepy psychiatrii neurologii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/ppn.2024.147100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Behavioral data collected from smartphones can assist artificial intelligence (AI) in assessing and predicting fluctuations in mental states in patients with bipolar disorder (BD). In Poland, the MoodMon online system is used to integrate passive and active data, including voice parameters, for analysis and the issue of alerts based on changes in individual's mental state. The study aims to explore whether active engagement of the patient enhances the efficacy of the advanced MoodMon tool. This clinical trial is embedded in a broader research initiative.

Methods: Methodologically, smartphones were used to automatically collect daily activity data from wristbands and phones of 75 BD patients. Clinical evaluations, using the Hamilton Depression and Young Mania Rating Scales were conducted via a web app, regular visits, calls, or system-initiated contacts after alerts. The MoodMon system, trained on patient data, was compared against clinical evaluations, successfully predicting mental states.

Results: Results showed high alert accuracy: true positive ratio (TPR) at 86.6% (sensitivity) and true negative ratio (TNR) at 98.59% (specificity). Active patient voice data submissions notably improved the prediction of changes or stability in mental states.

Conclusions: Active patient participation in data submission enhances MoodMon's effectiveness as an AI-driven monitoring tool for BD. This underscores the potential of behavioral markers and mobile health applications in mental health care.

Abstract Image

Abstract Image

Abstract Image

MoodMon:通过患者驱动的语音参数提交和AI技术,实现双相情感障碍监测的新型优化。
目的:从智能手机收集的行为数据可以帮助人工智能(AI)评估和预测双相情感障碍(BD)患者的精神状态波动。在波兰,MoodMon在线系统用于整合被动和主动数据,包括语音参数,用于分析和根据个人精神状态变化发出警报。该研究旨在探讨患者的积极参与是否能提高先进的MoodMon工具的疗效。这项临床试验是一项更广泛的研究计划的一部分。方法:在方法学上,使用智能手机自动收集75例BD患者腕带和手机的日常活动数据。临床评估,使用汉密尔顿抑郁症和年轻躁狂症评定量表,通过网络应用程序,定期访问,电话,或警报后系统发起的联系进行。经过患者数据训练的MoodMon系统与临床评估进行了比较,成功地预测了精神状态。结果:结果具有较高的预警准确率:真阳性率(TPR)为86.6%(敏感性),真阴性率(TNR)为98.59%(特异性)。积极的患者语音数据提交显着改善了对精神状态变化或稳定性的预测。结论:患者积极参与数据提交提高了MoodMon作为人工智能驱动的双相障碍监测工具的有效性。这强调了行为标记和移动健康应用在精神卫生保健中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信