Caspase-1/11 controls Zika virus replication in astrocytes by inhibiting glycolytic metabolism.

Ingrid S de Farias, Guilherme Ribeiro, Isaú H Noronha, Victoria Weise L Lucena, Jean P S Peron, Pedro M Moraes-Vieira, Jose C Alves-Filho, Karina R Bortoluci
{"title":"Caspase-1/11 controls Zika virus replication in astrocytes by inhibiting glycolytic metabolism.","authors":"Ingrid S de Farias, Guilherme Ribeiro, Isaú H Noronha, Victoria Weise L Lucena, Jean P S Peron, Pedro M Moraes-Vieira, Jose C Alves-Filho, Karina R Bortoluci","doi":"10.1111/febs.70061","DOIUrl":null,"url":null,"abstract":"<p><p>Zika virus (ZIKV) poses a significant threat due to its association with severe neurological complications, particularly during pregnancy. Although viruses exhibit tropism for neural cells, including astrocytes, the role of these cells in controlling ZIKV replication remains unclear. In this study, we demonstrated that ZIKV induces caspase-1 activation in primary astrocytes despite the absence of classical signs of inflammasome activation. Caspase-1 and caspase-11 double knockout (caspase-1/11<sup>-/-</sup>) astrocytes exhibit heightened permissiveness to viral replication, accompanied by overactivation of glycolytic metabolism. Inhibition of glycolysis reversed the susceptibility of caspase-1/11<sup>-/-</sup> astrocytes to ZIKV infection. Protein network analysis revealed mammalian target of rapamycin complex (mTORC) as a link between proteins involved in glycolysis and caspase-1, and mTORC inhibition also suppressed viral replication. Furthermore, we found that the impact of caspase-1/11 on astrocytes depends on the regulation of pyruvate transport to mitochondria for viral replication. Overall, our findings elucidate a caspase-1/11-dependent microbicidal mechanism in astrocytes that involves the mTORC/glycolytic pathway/pyruvate axis, providing insights into potential therapeutic targets for ZIKV infection.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Zika virus (ZIKV) poses a significant threat due to its association with severe neurological complications, particularly during pregnancy. Although viruses exhibit tropism for neural cells, including astrocytes, the role of these cells in controlling ZIKV replication remains unclear. In this study, we demonstrated that ZIKV induces caspase-1 activation in primary astrocytes despite the absence of classical signs of inflammasome activation. Caspase-1 and caspase-11 double knockout (caspase-1/11-/-) astrocytes exhibit heightened permissiveness to viral replication, accompanied by overactivation of glycolytic metabolism. Inhibition of glycolysis reversed the susceptibility of caspase-1/11-/- astrocytes to ZIKV infection. Protein network analysis revealed mammalian target of rapamycin complex (mTORC) as a link between proteins involved in glycolysis and caspase-1, and mTORC inhibition also suppressed viral replication. Furthermore, we found that the impact of caspase-1/11 on astrocytes depends on the regulation of pyruvate transport to mitochondria for viral replication. Overall, our findings elucidate a caspase-1/11-dependent microbicidal mechanism in astrocytes that involves the mTORC/glycolytic pathway/pyruvate axis, providing insights into potential therapeutic targets for ZIKV infection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信