Engagement, user satisfaction, and the amplification of divisive content on social media.

IF 2.2 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2025-03-05 eCollection Date: 2025-03-01 DOI:10.1093/pnasnexus/pgaf062
Smitha Milli, Micah Carroll, Yike Wang, Sashrika Pandey, Sebastian Zhao, Anca D Dragan
{"title":"Engagement, user satisfaction, and the amplification of divisive content on social media.","authors":"Smitha Milli, Micah Carroll, Yike Wang, Sashrika Pandey, Sebastian Zhao, Anca D Dragan","doi":"10.1093/pnasnexus/pgaf062","DOIUrl":null,"url":null,"abstract":"<p><p>Social media ranking algorithms typically optimize for users' revealed preferences, i.e. user engagement such as clicks, shares, and likes. Many have hypothesized that by focusing on users' revealed preferences, these algorithms may exacerbate human behavioral biases. In a preregistered algorithmic audit, we found that, relative to a reverse-chronological baseline, Twitter's engagement-based ranking algorithm amplifies emotionally charged, out-group hostile content that users say makes them feel worse about their political out-group. Furthermore, we find that users do <i>not</i> prefer the political tweets selected by the algorithm, suggesting that the engagement-based algorithm underperforms in satisfying users' stated preferences. Finally, we explore the implications of an alternative approach that ranks content based on users' stated preferences and find a reduction in angry, partisan, and out-group hostile content, but also a potential reinforcement of proattitudinal content. Overall, our findings suggest that greater integration of stated preferences into social media ranking algorithms could promote better online discourse, though potential trade-offs also warrant further investigation.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 3","pages":"pgaf062"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894805/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgaf062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Social media ranking algorithms typically optimize for users' revealed preferences, i.e. user engagement such as clicks, shares, and likes. Many have hypothesized that by focusing on users' revealed preferences, these algorithms may exacerbate human behavioral biases. In a preregistered algorithmic audit, we found that, relative to a reverse-chronological baseline, Twitter's engagement-based ranking algorithm amplifies emotionally charged, out-group hostile content that users say makes them feel worse about their political out-group. Furthermore, we find that users do not prefer the political tweets selected by the algorithm, suggesting that the engagement-based algorithm underperforms in satisfying users' stated preferences. Finally, we explore the implications of an alternative approach that ranks content based on users' stated preferences and find a reduction in angry, partisan, and out-group hostile content, but also a potential reinforcement of proattitudinal content. Overall, our findings suggest that greater integration of stated preferences into social media ranking algorithms could promote better online discourse, though potential trade-offs also warrant further investigation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信