A Wireless Implantable Closed-Loop Electrochemical Drug Delivery System.

Max L Wang, Pyungwoo Yeon, Mohammad Mofidfar, Christian Chamberlayne, Haixia Xu, Justin P Annes, Richard N Zare, Amin Arbabian
{"title":"A Wireless Implantable Closed-Loop Electrochemical Drug Delivery System.","authors":"Max L Wang, Pyungwoo Yeon, Mohammad Mofidfar, Christian Chamberlayne, Haixia Xu, Justin P Annes, Richard N Zare, Amin Arbabian","doi":"10.1109/TBCAS.2024.3507022","DOIUrl":null,"url":null,"abstract":"<p><p>Wireless implantable drug delivery systems (DDSs) enable targeted, on-demand drug release to maximize therapeutic efficacy. Ultrasound has been proposed to wirelessly power and control millimeter-sized deeply implantable DDSs, but initial demonstrations encountered challenges in power transfer and release control reliability in dynamic in vivo environments. In this work, we present a closed-loop implantable DDS using ultrasound wireless power and communication in conjunction with an electrochemical drug release mechanism. The system consists of piezoelectric transducers for wireless power and data transmission, a drug delivery module containing drug-loaded electroresponsive nanoparticles, and a custom CMOS integrated circuit for closed-loop drug release using a programmable potentiostat capable of providing potentials up to ±1.5 V and sensing current up to ±100 μA. The chip also improves power transfer robustness by enabling ultrasound power combining and rectifier voltage feedback which can be used to adapt the power transmitter and minimize misalignment. Closed-loop release control is tested in vitro using the wirelessly powered DDS at 8 cm depth by adjusting the potentiostat stimulus voltage based on feedback of redox current into fluorescein-loaded nanoparticles, resulting in consistent 2 μg release across different fluorescein loading concentrations and a 39% reduction in release amount variation. These results demonstrate the effectiveness of closed-loop release control in enabling precise and reliable drug delivery.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3507022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless implantable drug delivery systems (DDSs) enable targeted, on-demand drug release to maximize therapeutic efficacy. Ultrasound has been proposed to wirelessly power and control millimeter-sized deeply implantable DDSs, but initial demonstrations encountered challenges in power transfer and release control reliability in dynamic in vivo environments. In this work, we present a closed-loop implantable DDS using ultrasound wireless power and communication in conjunction with an electrochemical drug release mechanism. The system consists of piezoelectric transducers for wireless power and data transmission, a drug delivery module containing drug-loaded electroresponsive nanoparticles, and a custom CMOS integrated circuit for closed-loop drug release using a programmable potentiostat capable of providing potentials up to ±1.5 V and sensing current up to ±100 μA. The chip also improves power transfer robustness by enabling ultrasound power combining and rectifier voltage feedback which can be used to adapt the power transmitter and minimize misalignment. Closed-loop release control is tested in vitro using the wirelessly powered DDS at 8 cm depth by adjusting the potentiostat stimulus voltage based on feedback of redox current into fluorescein-loaded nanoparticles, resulting in consistent 2 μg release across different fluorescein loading concentrations and a 39% reduction in release amount variation. These results demonstrate the effectiveness of closed-loop release control in enabling precise and reliable drug delivery.

一种无线植入式闭环电化学给药系统。
无线植入式药物输送系统(dds)能够实现靶向,按需药物释放,以最大限度地提高治疗效果。超声已被提出用于无线供电和控制毫米级深度植入式dds,但最初的演示在动态体内环境下的功率传输和释放控制可靠性方面遇到了挑战。在这项工作中,我们提出了一种闭环植入式DDS,利用超声无线电源和通信结合电化学药物释放机制。该系统由用于无线供电和数据传输的压电换能器、含有载药电响应纳米颗粒的药物递送模块以及用于闭环药物释放的定制CMOS集成电路组成,该电路使用可编程恒电位器,可提供高达±1.5 V的电位,感应电流高达±100 μA。该芯片还通过实现超声功率组合和整流电压反馈来提高功率传输的鲁棒性,该反馈可用于调整功率变送器并最大限度地减少错位。在体外实验中,利用无线驱动的DDS在8 cm深度下进行闭环释放控制测试,通过将氧化还原电流反馈到负载荧光素的纳米颗粒中,调节恒电位刺激电压,使不同负载荧光素浓度下的2 μg释放一致,释放量变化减少39%。这些结果证明了闭环释放控制在实现精确和可靠的给药方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信