Patricia J Hare, Jonathan I Batchelder, Travis J LaGree, Nisha Mahey, Angela D Power, Yi I Wu, Wendy W K Mok
{"title":"Time-Lapse Epifluorescence Microscopy Imaging of Pseudomonas aeruginosa and Staphylococcus aureus Heterogeneous Phenotypes.","authors":"Patricia J Hare, Jonathan I Batchelder, Travis J LaGree, Nisha Mahey, Angela D Power, Yi I Wu, Wendy W K Mok","doi":"10.3791/67617","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic persistence is a phenomenon in which a small number of bacterial cells in a genetically susceptible population survive antibiotic treatment that kills the other genetically identical cells. Bacterial persisters can resume replication once antibiotic treatment ends and are commonly thought to underlie clinical treatment failure. Recent work harnessing the power of time-lapse fluorescence microscopy, in which bacteria are labeled with fluorescent transcriptional reporters, translational reporters, and/or dyes for a variety of cellular features, has advanced our understanding of Escherichia coli persisters beyond what could be learned from population-level antibiotic survival assays. Such single-cell approaches, rather than bulk population assays, are essential for delineating the mechanisms of persister formation, damage response, and survival. However, methods for studying persisters in other important pathogenic species at this level of detail remain limited. This study provides an adaptable approach for time-lapse imaging of Pseudomonas aeruginosa (a gram-negative rod) and Staphylococcus aureus (a gram-positive coccus) during antibiotic treatment and recovery. We discuss molecular genetic approaches to introduce fluorescent reporters into these bacteria. Using these reporters, as well as dyes, we can track the phenotypic changes, morphological features, and fates of individual cells in response to antibiotic treatment. Additionally, we are able to observe the phenotypes of individual persisters as they resuscitate following treatment. In all, this work serves as a resource for those interested in tracking the survival and gene expression of individual antibiotic-treated cells, including persisters, both during and after treatment, in clinically important pathogens.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67617","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotic persistence is a phenomenon in which a small number of bacterial cells in a genetically susceptible population survive antibiotic treatment that kills the other genetically identical cells. Bacterial persisters can resume replication once antibiotic treatment ends and are commonly thought to underlie clinical treatment failure. Recent work harnessing the power of time-lapse fluorescence microscopy, in which bacteria are labeled with fluorescent transcriptional reporters, translational reporters, and/or dyes for a variety of cellular features, has advanced our understanding of Escherichia coli persisters beyond what could be learned from population-level antibiotic survival assays. Such single-cell approaches, rather than bulk population assays, are essential for delineating the mechanisms of persister formation, damage response, and survival. However, methods for studying persisters in other important pathogenic species at this level of detail remain limited. This study provides an adaptable approach for time-lapse imaging of Pseudomonas aeruginosa (a gram-negative rod) and Staphylococcus aureus (a gram-positive coccus) during antibiotic treatment and recovery. We discuss molecular genetic approaches to introduce fluorescent reporters into these bacteria. Using these reporters, as well as dyes, we can track the phenotypic changes, morphological features, and fates of individual cells in response to antibiotic treatment. Additionally, we are able to observe the phenotypes of individual persisters as they resuscitate following treatment. In all, this work serves as a resource for those interested in tracking the survival and gene expression of individual antibiotic-treated cells, including persisters, both during and after treatment, in clinically important pathogens.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.