KLF9 mediates NLRP3 inflammasome and reactive oxygen species to mediate pyroptosis in trophoblasts.

Human & experimental toxicology Pub Date : 2025-01-01 Epub Date: 2025-03-11 DOI:10.1177/09603271251324702
Qian Li, Min Chen
{"title":"KLF9 mediates NLRP3 inflammasome and reactive oxygen species to mediate pyroptosis in trophoblasts.","authors":"Qian Li, Min Chen","doi":"10.1177/09603271251324702","DOIUrl":null,"url":null,"abstract":"<p><p>IntroductionThe objective of this study was to explore the effect of KLF9 on oxidative stress (OS) and NLRP3-mediated inflammation in preeclampsia (PE).MethodsLipopolysaccharide (LPS)+adenosine triphosphate (ATP)-induced HTR-8/SVneo cells were used as an <i>in vitro</i> PE inflammation cell model. shRNA was used to interfere with KLF9 expression (sh-KLF9) to assess the transfection efficiency and the effect of KLF9 on cell proliferation, migration, and invasion. ELISA was performed to detect OS-related factors and inflammatory cytokines. Reactive oxygen species (ROS) levels and pyroptosis were analyzed using DCFH-DA and TUNEL staining. LPS and ATP induced HTR-8/SVneo cells were co-transfected with sh-PRDX6/sh-KLF9 to explore the potential regulatory effect of KLF9 on PRDX6.ResultsLPS+ATP stimulation increased KLF9 expression in the PE cell model. Specifically, reducing KLF9 levels alleviated morphological damage and enhanced proliferation, migration, and invasion in the <i>in vitro</i> PE cell models. Moreover, inhibiting KLF9 expression decreased protein expression of NLRP3, GSDMD-N, cleaved caspase-1, and cleaved-IL-1β, suppressing cell death in LPS+ATP-induced HTR-8/SVneo cells. Analysis of OS indicators revealed that downregulating KLF9 expression restrained intracellular ROS production, decreased MDA expression, and increased SOD and CAT levels. KLF9 regulated the transcription of PRDX6 to attenuate OS and pyroptosis. Knockdown of PRDX6 partially abolished the effect of KLF9 downregulation on OS and pyroptosis of LPS+ATP-induced HTR-8/SVneo cells, as evidenced by the inhibition of cell proliferation, migration, and invasion, as well as the enhanced activity of the NLRP3 inflammasome.ConclusionDownregulation of KLF9 enhances trophoblast cell invasion and reduces OS and NLRP3 inflammasome activation-mediated pyroptosis.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"44 ","pages":"9603271251324702"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & experimental toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09603271251324702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

IntroductionThe objective of this study was to explore the effect of KLF9 on oxidative stress (OS) and NLRP3-mediated inflammation in preeclampsia (PE).MethodsLipopolysaccharide (LPS)+adenosine triphosphate (ATP)-induced HTR-8/SVneo cells were used as an in vitro PE inflammation cell model. shRNA was used to interfere with KLF9 expression (sh-KLF9) to assess the transfection efficiency and the effect of KLF9 on cell proliferation, migration, and invasion. ELISA was performed to detect OS-related factors and inflammatory cytokines. Reactive oxygen species (ROS) levels and pyroptosis were analyzed using DCFH-DA and TUNEL staining. LPS and ATP induced HTR-8/SVneo cells were co-transfected with sh-PRDX6/sh-KLF9 to explore the potential regulatory effect of KLF9 on PRDX6.ResultsLPS+ATP stimulation increased KLF9 expression in the PE cell model. Specifically, reducing KLF9 levels alleviated morphological damage and enhanced proliferation, migration, and invasion in the in vitro PE cell models. Moreover, inhibiting KLF9 expression decreased protein expression of NLRP3, GSDMD-N, cleaved caspase-1, and cleaved-IL-1β, suppressing cell death in LPS+ATP-induced HTR-8/SVneo cells. Analysis of OS indicators revealed that downregulating KLF9 expression restrained intracellular ROS production, decreased MDA expression, and increased SOD and CAT levels. KLF9 regulated the transcription of PRDX6 to attenuate OS and pyroptosis. Knockdown of PRDX6 partially abolished the effect of KLF9 downregulation on OS and pyroptosis of LPS+ATP-induced HTR-8/SVneo cells, as evidenced by the inhibition of cell proliferation, migration, and invasion, as well as the enhanced activity of the NLRP3 inflammasome.ConclusionDownregulation of KLF9 enhances trophoblast cell invasion and reduces OS and NLRP3 inflammasome activation-mediated pyroptosis.

KLF9介导NLRP3炎性体和活性氧介导滋养细胞焦亡。
本研究旨在探讨KLF9对子痫前期(PE)氧化应激(OS)和nlrp3介导的炎症的影响。方法采用多糖(LPS)+三磷酸腺苷(ATP)诱导的HTR-8/SVneo细胞作为体外PE炎症细胞模型。采用shRNA干扰KLF9表达(sh-KLF9),评估转染效率及KLF9对细胞增殖、迁移和侵袭的影响。ELISA检测os相关因子及炎症因子。DCFH-DA和TUNEL染色分析小鼠活性氧(ROS)水平和焦亡情况。将LPS和ATP诱导的HTR-8/SVneo细胞共转染sh-PRDX6/sh-KLF9,探讨KLF9对PRDX6的潜在调控作用。结果slps +ATP刺激可增加PE细胞模型中KLF9的表达。具体而言,在体外PE细胞模型中,降低KLF9水平可减轻形态学损伤,增强增殖、迁移和侵袭。此外,抑制KLF9表达可降低NLRP3、GSDMD-N、裂解caspase-1和裂解il -1β的蛋白表达,抑制LPS+ atp诱导的HTR-8/SVneo细胞的细胞死亡。OS指标分析显示,下调KLF9表达抑制细胞内ROS生成,降低MDA表达,升高SOD和CAT水平。KLF9调节PRDX6的转录,减轻OS和焦亡。PRDX6的下调部分消除了KLF9下调对LPS+ atp诱导的HTR-8/SVneo细胞OS和凋亡的影响,表现为细胞增殖、迁移和侵袭受到抑制,NLRP3炎症小体活性增强。结论下调KLF9可增强滋养细胞侵袭,减少OS和NLRP3炎症小体激活介导的焦亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信