Network analyses unraveled the complex interactions in the rumen microbiota associated with methane emission in dairy cattle.

IF 4.9 Q1 MICROBIOLOGY
Xiaoxing Ye, Goutam Sahana, Mogens Sandø Lund, Bingjie Li, Zexi Cai
{"title":"Network analyses unraveled the complex interactions in the rumen microbiota associated with methane emission in dairy cattle.","authors":"Xiaoxing Ye, Goutam Sahana, Mogens Sandø Lund, Bingjie Li, Zexi Cai","doi":"10.1186/s42523-025-00386-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Methane emissions from livestock, particularly from dairy cattle, represent a significant source of greenhouse gas, contributing to the global climate crisis. Understanding the complex interactions within the rumen microbiota that influence methane emissions is crucial for developing effective mitigation strategies.</p><p><strong>Results: </strong>This study employed Weighted Gene Co-expression Network Analysis to investigate the complex interactions within the rumen microbiota that influence methane emissions. By integrating extensive rumen microbiota sequencing data with precise methane emission measurements in 750 Holstein dairy cattle, our research identified distinct microbial communities and their associations with methane production. Key findings revealed that the blue module from network analysis was significantly correlated (0.45) with methane emissions. In this module, taxa included the genera Prevotella and Methanobrevibactor, along with species such as Prevotella brevis, Prevotella ruminicola, Prevotella baroniae, Prevotella bryantii, Lachnobacterium bovis, and Methanomassiliicoccus luminyensis are the key components to drive the complex networks. However, the absence of metagenomics sequencing is difficult to reveal the deeper taxa level and functional profiles.</p><p><strong>Conclusions: </strong>The application of Weighted Gene Co-expression Network Analysis provided a comprehensive understanding of the microbiota-methane emission relationship, serving as an innovative approach for microbiota-phenotype association studies in cattle. Our findings underscore the importance of microbiota-trait and microbiota-microbiota associations related to methane emission in dairy cattle, contributing to a systematic understanding of methane production in cattle. This research offers key information on microbial management for mitigating environmental impact on the cattle population.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"24"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11899718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-025-00386-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Methane emissions from livestock, particularly from dairy cattle, represent a significant source of greenhouse gas, contributing to the global climate crisis. Understanding the complex interactions within the rumen microbiota that influence methane emissions is crucial for developing effective mitigation strategies.

Results: This study employed Weighted Gene Co-expression Network Analysis to investigate the complex interactions within the rumen microbiota that influence methane emissions. By integrating extensive rumen microbiota sequencing data with precise methane emission measurements in 750 Holstein dairy cattle, our research identified distinct microbial communities and their associations with methane production. Key findings revealed that the blue module from network analysis was significantly correlated (0.45) with methane emissions. In this module, taxa included the genera Prevotella and Methanobrevibactor, along with species such as Prevotella brevis, Prevotella ruminicola, Prevotella baroniae, Prevotella bryantii, Lachnobacterium bovis, and Methanomassiliicoccus luminyensis are the key components to drive the complex networks. However, the absence of metagenomics sequencing is difficult to reveal the deeper taxa level and functional profiles.

Conclusions: The application of Weighted Gene Co-expression Network Analysis provided a comprehensive understanding of the microbiota-methane emission relationship, serving as an innovative approach for microbiota-phenotype association studies in cattle. Our findings underscore the importance of microbiota-trait and microbiota-microbiota associations related to methane emission in dairy cattle, contributing to a systematic understanding of methane production in cattle. This research offers key information on microbial management for mitigating environmental impact on the cattle population.

网络分析揭示了奶牛瘤胃微生物群与甲烷排放相关的复杂相互作用。
背景:牲畜,特别是奶牛的甲烷排放是温室气体的一个重要来源,加剧了全球气候危机。了解影响甲烷排放的瘤胃微生物群内部复杂的相互作用对于制定有效的缓解策略至关重要。结果:本研究采用加权基因共表达网络分析(Weighted Gene Co-expression Network Analysis)研究了瘤胃微生物群内部影响甲烷排放的复杂相互作用。通过整合750头荷斯坦奶牛的瘤胃微生物群测序数据和精确的甲烷排放测量,我们的研究确定了不同的微生物群落及其与甲烷产生的关联。关键发现表明,网络分析的蓝色模块与甲烷排放量显著相关(0.45)。在这个模块中,包括普雷沃氏菌属和甲烷预防菌属在内的分类群,以及短普雷沃氏菌、反刍普雷沃氏菌、巴氏普雷沃氏菌、bryantii普雷沃氏菌、牛拉赫杆菌和发光甲烷球菌等物种是驱动复杂网络的关键组成部分。然而,缺乏宏基因组测序难以揭示更深层次的分类群水平和功能特征。结论:应用加权基因共表达网络分析方法,可以全面了解牛的微生物群-甲烷排放关系,为微生物群-表型关联研究提供了一种创新方法。我们的研究结果强调了微生物群-性状和微生物群-微生物群与奶牛甲烷排放相关的重要性,有助于系统地了解牛的甲烷产生。该研究为微生物管理减轻环境对牛种群的影响提供了关键信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信