Experimental Investigation of the Hierarchical Control in DC Microgrids Using a Real-time Simulator.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Xiaoran Dai, Zhongcheng Lei, Wenshan Hu, Ningzhao Luo, Hong Zhou, Guo-Ping Liu
{"title":"Experimental Investigation of the Hierarchical Control in DC Microgrids Using a Real-time Simulator.","authors":"Xiaoran Dai, Zhongcheng Lei, Wenshan Hu, Ningzhao Luo, Hong Zhou, Guo-Ping Liu","doi":"10.3791/67464","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of renewable energy sources has underscored the significance of microgrids, particularly DC variants, which are well-suited for integrating photovoltaic panels, battery storage systems, and other DC load solutions. This paper presents the development and experimentation of a DC microgrid with hierarchical control implemented in OPAL RT-Lab, a simulator. The microgrid includes distributed energy resources (DERs) interconnected via power converters, a DC bus, and DC loads. The primary control employs a droop control mechanism and double-loop Proportional-Integral (PI) control to regulate voltage and current, ensuring stable operation and proportional power sharing. The secondary control utilizes a consensus-based strategy to coordinate DERs to restore the bus voltage and ensure accurate power sharing, enhancing system reliability and efficiency. The experimental setup detailed in this paper includes circuit modeling, hardware implementation, and control strategies. The hardware platform's circuitry and controller parameters are specified, and the results can be observed through oscilloscope measurements. Two sets of experiments demonstrating the secondary control response with and without delay are conducted to validate the effectiveness of the control strategy. The outcomes confirm the successful implementation of hierarchical control in the microgrid. This study underscores the significance of a comprehensive experimental platform for advancing microgrid technology, providing valuable insights for future research and development.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67464","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of renewable energy sources has underscored the significance of microgrids, particularly DC variants, which are well-suited for integrating photovoltaic panels, battery storage systems, and other DC load solutions. This paper presents the development and experimentation of a DC microgrid with hierarchical control implemented in OPAL RT-Lab, a simulator. The microgrid includes distributed energy resources (DERs) interconnected via power converters, a DC bus, and DC loads. The primary control employs a droop control mechanism and double-loop Proportional-Integral (PI) control to regulate voltage and current, ensuring stable operation and proportional power sharing. The secondary control utilizes a consensus-based strategy to coordinate DERs to restore the bus voltage and ensure accurate power sharing, enhancing system reliability and efficiency. The experimental setup detailed in this paper includes circuit modeling, hardware implementation, and control strategies. The hardware platform's circuitry and controller parameters are specified, and the results can be observed through oscilloscope measurements. Two sets of experiments demonstrating the secondary control response with and without delay are conducted to validate the effectiveness of the control strategy. The outcomes confirm the successful implementation of hierarchical control in the microgrid. This study underscores the significance of a comprehensive experimental platform for advancing microgrid technology, providing valuable insights for future research and development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信