Ileana Tossolini, Regina Mencia, Agustín L Arce, Pablo A Manavella
{"title":"The genome awakens: transposon-mediated gene regulation.","authors":"Ileana Tossolini, Regina Mencia, Agustín L Arce, Pablo A Manavella","doi":"10.1016/j.tplants.2025.02.005","DOIUrl":null,"url":null,"abstract":"<p><p>Current progress in plant genomics has uncovered important roles of transposable elements (TEs) in gene regulation and has transformed their perception from 'junk DNA' to key genomic players. Recent advances show how stress conditions trigger TE mobilization, introducing new regulatory sequences that can reshape plant responses to environmental changes. This review explores our current knowledge of how TEs, especially those located in gene-rich regions of plant genomes, regulate gene expression at different mechanistic levels. We highlight recent findings on how these elements influence transcriptional and epigenetic modifications as well as chromatin organization, and thus contribute to phenotypic diversity and plant adaptation. Understanding the regulatory potential of TEs creates novel opportunities for crop improvement and biotechnological applications, leading to a new hope for sustainable agriculture and innovation.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2025.02.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Current progress in plant genomics has uncovered important roles of transposable elements (TEs) in gene regulation and has transformed their perception from 'junk DNA' to key genomic players. Recent advances show how stress conditions trigger TE mobilization, introducing new regulatory sequences that can reshape plant responses to environmental changes. This review explores our current knowledge of how TEs, especially those located in gene-rich regions of plant genomes, regulate gene expression at different mechanistic levels. We highlight recent findings on how these elements influence transcriptional and epigenetic modifications as well as chromatin organization, and thus contribute to phenotypic diversity and plant adaptation. Understanding the regulatory potential of TEs creates novel opportunities for crop improvement and biotechnological applications, leading to a new hope for sustainable agriculture and innovation.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.