Leveraging Preclinical Modeling for Clinical Advancements in Single Ventricle Physiology: Spotlight on the Fontan Circulation.

IF 12.8 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL
Andreas Escher, Carlos Aguilar Vega, Markus A Horvath, Caglar Ozturk, Ellen T Roche
{"title":"Leveraging Preclinical Modeling for Clinical Advancements in Single Ventricle Physiology: Spotlight on the Fontan Circulation.","authors":"Andreas Escher, Carlos Aguilar Vega, Markus A Horvath, Caglar Ozturk, Ellen T Roche","doi":"10.1146/annurev-bioeng-102723-013709","DOIUrl":null,"url":null,"abstract":"<p><p>Preclinical modeling of human circulation has been instrumental in advancing cardiovascular medicine. Alongside clinical research, the armamentarium of computational (e.g., lumped parameter or computational fluid dynamics) and experimental (e.g., benchtop or animal) models have substantially enhanced our understanding of risk factors and root causes for circulatory diseases. Recent innovations are further disrupting the boundaries of these preclinical models toward patient-specific simulations, surgical planning, and postoperative outcome prediction. This fast-paced progress empowers preclinical modeling to increasingly delve into the intricacies of single ventricle physiology, a rare and heterogeneous congenital heart disease that remains inadequately understood. Here, we review the current landscape of preclinical modeling (computational and experimental) proposed to advance clinical management of a prominent yet complex subset of single ventricle physiology: patients who have undergone Fontan-type surgical corrections. Further, we explore recent innovations and emerging technologies that are poised to bridge the gap between preclinical Fontan modeling and clinical implementation.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-102723-013709","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Preclinical modeling of human circulation has been instrumental in advancing cardiovascular medicine. Alongside clinical research, the armamentarium of computational (e.g., lumped parameter or computational fluid dynamics) and experimental (e.g., benchtop or animal) models have substantially enhanced our understanding of risk factors and root causes for circulatory diseases. Recent innovations are further disrupting the boundaries of these preclinical models toward patient-specific simulations, surgical planning, and postoperative outcome prediction. This fast-paced progress empowers preclinical modeling to increasingly delve into the intricacies of single ventricle physiology, a rare and heterogeneous congenital heart disease that remains inadequately understood. Here, we review the current landscape of preclinical modeling (computational and experimental) proposed to advance clinical management of a prominent yet complex subset of single ventricle physiology: patients who have undergone Fontan-type surgical corrections. Further, we explore recent innovations and emerging technologies that are poised to bridge the gap between preclinical Fontan modeling and clinical implementation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Biomedical Engineering
Annual Review of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
18.80
自引率
0.00%
发文量
14
期刊介绍: Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信