Muhammad Afiq Irfan Mohd Shumiri, Abdillah Sani Mohd Najib, Nor Akmal Fadil
{"title":"Current status and advances in zinc anodes for rechargeable aqueous zinc-air batteries.","authors":"Muhammad Afiq Irfan Mohd Shumiri, Abdillah Sani Mohd Najib, Nor Akmal Fadil","doi":"10.1080/14686996.2024.2448418","DOIUrl":null,"url":null,"abstract":"<p><p>To promote sustainable development and reduce fossil fuel consumption, there is a growing demand for high-performance, cost-effective, safe and environmentally friendly batteries for large-scale energy storage systems. Among the emerging technologies, zinc-air batteries (ZABs) have attracted significant interest. By integrating the principles of traditional zinc-ion batteries and fuel cells, ZABs offer remarkably high theoretical energy density at lower production cost compared to the current state-of-the-art lithium-ion batteries (LIBs). However, the critical challenge remains in developing high-performance zinc anode. Herein, this review provides a comprehensive analysis of the current status and advancements in zinc anodes for rechargeable aqueous ZABs. We begin by highlighting the major challenges and underlying mechanisms associated with zinc anodes including issues such as uneven zinc deposition, dendrite growth and hydrogen evolution reaction. Then, this review discusses the recent advancements in zinc anode modifications, focusing on strategies such as alloying, surface porosity and zincophilicity. By reviewing the latest research, we also identify existing gaps and pose critical questions that need further exploration to push the field forward. The goal of this review is to inspire new research directions and promote the development of more efficient zinc anodes.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2448418"},"PeriodicalIF":7.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2448418","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To promote sustainable development and reduce fossil fuel consumption, there is a growing demand for high-performance, cost-effective, safe and environmentally friendly batteries for large-scale energy storage systems. Among the emerging technologies, zinc-air batteries (ZABs) have attracted significant interest. By integrating the principles of traditional zinc-ion batteries and fuel cells, ZABs offer remarkably high theoretical energy density at lower production cost compared to the current state-of-the-art lithium-ion batteries (LIBs). However, the critical challenge remains in developing high-performance zinc anode. Herein, this review provides a comprehensive analysis of the current status and advancements in zinc anodes for rechargeable aqueous ZABs. We begin by highlighting the major challenges and underlying mechanisms associated with zinc anodes including issues such as uneven zinc deposition, dendrite growth and hydrogen evolution reaction. Then, this review discusses the recent advancements in zinc anode modifications, focusing on strategies such as alloying, surface porosity and zincophilicity. By reviewing the latest research, we also identify existing gaps and pose critical questions that need further exploration to push the field forward. The goal of this review is to inspire new research directions and promote the development of more efficient zinc anodes.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.