Alleviation of salt stress in strawberries by hydrogen-rich water: Physiological, transcriptomic and metabolomic responses.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Renyuan Wang, Shaohua Chu, Dan Zhang, Kashif Hayat, Xia Zhang, Yaowei Chi, Xianzhong Ma, Xunfeng Chen, Haiyan Yang, Wenjiang Ding, Ting Zhao, Yongfeng Ren, Xijia Yang, Pei Zhou
{"title":"Alleviation of salt stress in strawberries by hydrogen-rich water: Physiological, transcriptomic and metabolomic responses.","authors":"Renyuan Wang, Shaohua Chu, Dan Zhang, Kashif Hayat, Xia Zhang, Yaowei Chi, Xianzhong Ma, Xunfeng Chen, Haiyan Yang, Wenjiang Ding, Ting Zhao, Yongfeng Ren, Xijia Yang, Pei Zhou","doi":"10.1111/ppl.70151","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing impacts of climate change and intensified human activities exacerbate soil salinization, posing significant challenges to agricultural productivity. Therefore, addressing salt stress in crops is a critical area of research. In this study, strawberry seedlings (Fragaria×ananassa Duch. 'Benihoppe') were used to investigate the alleviating effects of hydrogen-rich water (HRW) on salt stress through integrated transcriptomic and metabolomic analyses. HRW treatment was found to significantly enhance plant growth, notably increasing root biomass by 49.50%. Additionally, HRW modulated key parameters, including the levels of soluble sugars, malondialdehyde (MDA), and antioxidant enzyme activities, while promoting K<sup>+</sup> uptake and Na<sup>+</sup> exclusion. Transcriptomic analysis revealed that HRW induced the expression of genes associated with ion transport, antioxidant defence, and cell wall biosynthesis in roots. Metabolomic profiling identified phenolic acids, flavonoids, and amino acids as critical metabolites in HRW-mediated salt stress mitigation. Integrated multi-omics analysis highlighted two key metabolic pathways, phenylpropanoid biosynthesis and amino and nucleoside sugar metabolism, pivotal to the observed protective effects. This study provides molecular insights into the mechanisms by which HRW alleviates salt stress in strawberry seedlings, underscoring the potential of hydrogen gas applications in sustainable agriculture.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70151"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70151","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing impacts of climate change and intensified human activities exacerbate soil salinization, posing significant challenges to agricultural productivity. Therefore, addressing salt stress in crops is a critical area of research. In this study, strawberry seedlings (Fragaria×ananassa Duch. 'Benihoppe') were used to investigate the alleviating effects of hydrogen-rich water (HRW) on salt stress through integrated transcriptomic and metabolomic analyses. HRW treatment was found to significantly enhance plant growth, notably increasing root biomass by 49.50%. Additionally, HRW modulated key parameters, including the levels of soluble sugars, malondialdehyde (MDA), and antioxidant enzyme activities, while promoting K+ uptake and Na+ exclusion. Transcriptomic analysis revealed that HRW induced the expression of genes associated with ion transport, antioxidant defence, and cell wall biosynthesis in roots. Metabolomic profiling identified phenolic acids, flavonoids, and amino acids as critical metabolites in HRW-mediated salt stress mitigation. Integrated multi-omics analysis highlighted two key metabolic pathways, phenylpropanoid biosynthesis and amino and nucleoside sugar metabolism, pivotal to the observed protective effects. This study provides molecular insights into the mechanisms by which HRW alleviates salt stress in strawberry seedlings, underscoring the potential of hydrogen gas applications in sustainable agriculture.

富氢水对草莓盐胁迫的缓解:生理、转录组学和代谢组学反应。
气候变化的影响日益加剧和人类活动的加剧加剧了土壤盐碱化,对农业生产力构成了重大挑战。因此,解决作物的盐胁迫是一个关键的研究领域。在这项研究中,草莓幼苗(Fragaria×ananassa Duch。通过综合转录组学和代谢组学分析,研究富氢水(HRW)对盐胁迫的缓解作用。HRW处理显著促进植株生长,根系生物量显著提高49.50%。此外,HRW调节关键参数,包括可溶性糖、丙二醛(MDA)水平和抗氧化酶活性,同时促进K+吸收和Na+排除。转录组学分析显示,HRW诱导了根中离子运输、抗氧化防御和细胞壁生物合成相关基因的表达。代谢组学分析发现,酚酸、类黄酮和氨基酸是hrw介导的盐胁迫缓解的关键代谢物。综合多组学分析强调了两个关键的代谢途径,苯丙类生物合成和氨基和核苷糖代谢,是观察到的保护作用的关键。本研究提供了HRW缓解草莓幼苗盐胁迫的分子机制,强调了氢气在可持续农业中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信