Integrated gut microbiota and serum metabolomics reveal glyphosate-induced hepatic injury in mice.

Human & experimental toxicology Pub Date : 2025-01-01 Epub Date: 2025-03-11 DOI:10.1177/09603271251326877
Gang Li, Yu Cheng, Xiaolei Yang, Zijun Chai, Zhihui Mu, Hong Chao, Hongjie Li, Yanbo Qi, Lei Qi, Jicheng Liu
{"title":"Integrated gut microbiota and serum metabolomics reveal glyphosate-induced hepatic injury in mice.","authors":"Gang Li, Yu Cheng, Xiaolei Yang, Zijun Chai, Zhihui Mu, Hong Chao, Hongjie Li, Yanbo Qi, Lei Qi, Jicheng Liu","doi":"10.1177/09603271251326877","DOIUrl":null,"url":null,"abstract":"<p><p>IntroductionGlyphosate (GLP) is one of the most widely used herbicides in the world. However, its underlying effects on the liver remain unclear. This study aims to investigate the toxic effects and the gut microbiome- and serum metabolite-related mechanisms of GLP on the liver in mice.Methods16S rDNA sequencing and UPLC-Q-TOF-MS/MS were used to investigate the mechanisms of GLP toxicity in mice administered with 0, 50, 250 and 500 mg/kg/day GLP for 30 days.ResultsGLP induced hepatocyte edema and ballooning as well as inflammatory cell infiltration. Exposure to GLP resulted in increased levels of serum ALT, TBIL, DBIL, and GLU. Microbiota analysis at the phylum level demonstrated that the proportions of Patescibacteria decreased in the GLP-treated group. The genus-level analysis identified 11 different genera, with eight decreased and three increased in the GLP-exposed group. Metabolomics analysis of serum showed 42 differential metabolites between the GLP and control groups. The metabolic pathway enrichment analysis revealed that the pentose phosphate pathway (PPP) and pyrimidine metabolism were significantly activated. Spearman analysis showed that the changes in the differential metabolites of the PPP and pyrimidine metabolism and gut microbiota were strongly associated with the biochemical index.DiscussionIn conclusion, GLP exposure induces hepatic injury through alterations in the gut microbiome and metabolic pathways, particularly by activating the pentose phosphate pathway and pyrimidine metabolism.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"44 ","pages":"9603271251326877"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & experimental toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09603271251326877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

IntroductionGlyphosate (GLP) is one of the most widely used herbicides in the world. However, its underlying effects on the liver remain unclear. This study aims to investigate the toxic effects and the gut microbiome- and serum metabolite-related mechanisms of GLP on the liver in mice.Methods16S rDNA sequencing and UPLC-Q-TOF-MS/MS were used to investigate the mechanisms of GLP toxicity in mice administered with 0, 50, 250 and 500 mg/kg/day GLP for 30 days.ResultsGLP induced hepatocyte edema and ballooning as well as inflammatory cell infiltration. Exposure to GLP resulted in increased levels of serum ALT, TBIL, DBIL, and GLU. Microbiota analysis at the phylum level demonstrated that the proportions of Patescibacteria decreased in the GLP-treated group. The genus-level analysis identified 11 different genera, with eight decreased and three increased in the GLP-exposed group. Metabolomics analysis of serum showed 42 differential metabolites between the GLP and control groups. The metabolic pathway enrichment analysis revealed that the pentose phosphate pathway (PPP) and pyrimidine metabolism were significantly activated. Spearman analysis showed that the changes in the differential metabolites of the PPP and pyrimidine metabolism and gut microbiota were strongly associated with the biochemical index.DiscussionIn conclusion, GLP exposure induces hepatic injury through alterations in the gut microbiome and metabolic pathways, particularly by activating the pentose phosphate pathway and pyrimidine metabolism.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信