Identifying Heat Adaptability QTLs and Candidate Genes for Grain Appearance Quality at the Flowering Stage in Rice.

IF 4.8 1区 农林科学 Q1 AGRONOMY
Rice Pub Date : 2025-03-11 DOI:10.1186/s12284-025-00770-y
Lei Chen, Weiwei Chen, Jin Li, Yu Wei, Dongjin Qing, Juan Huang, Xinghai Yang, Maoyan Tang, Zhanying Zhang, Jianping Yu, Guofu Deng, Gaoxing Dai, Chao Chen, Tianfeng Liang, Yinghua Pan
{"title":"Identifying Heat Adaptability QTLs and Candidate Genes for Grain Appearance Quality at the Flowering Stage in Rice.","authors":"Lei Chen, Weiwei Chen, Jin Li, Yu Wei, Dongjin Qing, Juan Huang, Xinghai Yang, Maoyan Tang, Zhanying Zhang, Jianping Yu, Guofu Deng, Gaoxing Dai, Chao Chen, Tianfeng Liang, Yinghua Pan","doi":"10.1186/s12284-025-00770-y","DOIUrl":null,"url":null,"abstract":"<p><p>High temperature significantly impacts grain appearance quality, yet few studies have focused on identifying new quantitative trait loci (QTLs)/genes related to these traits under heat stress during the flowering stage in rice. In this study, a natural population of 525 rice accessions was used to identify QTLs and candidate genes associated with grain appearance quality using a Genome-Wide Association Study under heat stress. We identified 25 QTLs associated with grain length (GL), grain width (GW), and grain chalkiness (GC) under heat stress across 10 chromosomes in the three rice populations (full, indica, and japonica). Notably, three sets of overlapping QTLs were identified (set 1: qHTT-L3 and qHTT-XL3; set 2: qHTT-C5 and qHTT-XC5; set 3: qHTT-L11.1 and qHTT-GL11), located on chromosomes 3, 5, and 11, respectively. Haplotype analysis indicated that Hap1 is the superior haplotype, and pyramiding more than two superior alleles improved rice grain appearance quality (longer GL, wider GW, and lower GC) in high-temperature environments. Based on RNA-seq, qRT-PCR and functional annotations analysis, LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 were highly expressed, identifying them as the high-priority candidate genes for QTLs linked to grain appearance quality (GL, GW, and GC) under heat stress. Expression analysis revealed that LOC_Os05g06920, which encodes a relA-SpoT-like protein RSH4, and LOC_Os11g28104, which encodes a protein kinase with a DUF26 domain, were highly expressed in seeds, leaves, and shoots. And LOC_Os05g06970, encoding a peroxidase precursor, exhibited high expression levels in roots. Compared to the wild-type (WT) plants, the mutants of LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 exhibited increased GL and grain length-to-width ratio, but reduced GW under both natural and heat stress conditions, while the LOC_Os05g06970 and LOC_Os11g28104 mutants significantly increased the chalky grain rate and grain chalkiness degree under natural conditions. Furthermore, the LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 mutants showed a lower decline in grain appearance quality traits than the WT after high-temperature treatment. These findings suggest that LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 play crucial roles in regulating both grain development and heat tolerance under heat stress at anthesis, thus affecting grain appearance quality in rice. Our results provide a promising genetic resource for improving rice grain appearance quality under heat stress.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"13"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896946/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-025-00770-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

High temperature significantly impacts grain appearance quality, yet few studies have focused on identifying new quantitative trait loci (QTLs)/genes related to these traits under heat stress during the flowering stage in rice. In this study, a natural population of 525 rice accessions was used to identify QTLs and candidate genes associated with grain appearance quality using a Genome-Wide Association Study under heat stress. We identified 25 QTLs associated with grain length (GL), grain width (GW), and grain chalkiness (GC) under heat stress across 10 chromosomes in the three rice populations (full, indica, and japonica). Notably, three sets of overlapping QTLs were identified (set 1: qHTT-L3 and qHTT-XL3; set 2: qHTT-C5 and qHTT-XC5; set 3: qHTT-L11.1 and qHTT-GL11), located on chromosomes 3, 5, and 11, respectively. Haplotype analysis indicated that Hap1 is the superior haplotype, and pyramiding more than two superior alleles improved rice grain appearance quality (longer GL, wider GW, and lower GC) in high-temperature environments. Based on RNA-seq, qRT-PCR and functional annotations analysis, LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 were highly expressed, identifying them as the high-priority candidate genes for QTLs linked to grain appearance quality (GL, GW, and GC) under heat stress. Expression analysis revealed that LOC_Os05g06920, which encodes a relA-SpoT-like protein RSH4, and LOC_Os11g28104, which encodes a protein kinase with a DUF26 domain, were highly expressed in seeds, leaves, and shoots. And LOC_Os05g06970, encoding a peroxidase precursor, exhibited high expression levels in roots. Compared to the wild-type (WT) plants, the mutants of LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 exhibited increased GL and grain length-to-width ratio, but reduced GW under both natural and heat stress conditions, while the LOC_Os05g06970 and LOC_Os11g28104 mutants significantly increased the chalky grain rate and grain chalkiness degree under natural conditions. Furthermore, the LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 mutants showed a lower decline in grain appearance quality traits than the WT after high-temperature treatment. These findings suggest that LOC_Os05g06920, LOC_Os05g06970, and LOC_Os11g28104 play crucial roles in regulating both grain development and heat tolerance under heat stress at anthesis, thus affecting grain appearance quality in rice. Our results provide a promising genetic resource for improving rice grain appearance quality under heat stress.

水稻花期籽粒外观品质热适应性qtl及候选基因的鉴定
高温对水稻籽粒外观品质有显著影响,但目前对水稻花期高温胁迫下与这些性状相关的新数量性状位点(qtl)/基因的研究较少。本研究利用525个水稻自然群体,通过热胁迫下全基因组关联研究,鉴定了与籽粒外观品质相关的qtl和候选基因。在3个水稻群体(籼稻、籼稻和粳稻)的10条染色体中,共鉴定出25个与热胁迫下籽粒长度(GL)、籽粒宽度(GW)和籽粒白垩度(GC)相关的qtl。值得注意的是,我们发现了三组重叠的qtl(集合1:qhttp - l3和qhttp - xl3;集2:qhttp - c5和qhttp - xc5;第3组:qhttp - l11.1和qhttp - gl11),分别位于染色体3、5和11上。单倍型分析表明,Hap1为优势单倍型,在高温环境下,两个以上的优势等位基因聚锥提高了水稻籽粒外观品质(GL更长、GW更宽、GC更低)。基于RNA-seq、qRT-PCR和功能注释分析,LOC_Os05g06920、LOC_Os05g06970和LOC_Os11g28104高表达,确定它们是热胁迫下籽粒外观品质(GL、GW和GC) qtl的高优先级候选基因。表达分析显示,编码相关斑点样蛋白RSH4的LOC_Os05g06920和编码DUF26结构域蛋白激酶的LOC_Os11g28104在种子、叶片和芽中均有高表达。编码过氧化物酶前体的LOC_Os05g06970在根中表达量较高。与野生型(WT)植株相比,LOC_Os05g06920、LOC_Os05g06970和LOC_Os11g28104突变体在自然和热胁迫条件下均表现出GL和籽粒长宽比升高,GW降低,而LOC_Os05g06970和LOC_Os11g28104突变体在自然条件下显著提高了白垩粒率和籽粒白垩度。此外,高温处理后,LOC_Os05g06920、LOC_Os05g06970和LOC_Os11g28104突变体的籽粒外观品质性状下降幅度低于WT。综上所述,LOC_Os05g06920、LOC_Os05g06970和LOC_Os11g28104在水稻开花期热胁迫下调控籽粒发育和耐热性,从而影响籽粒外观品质。本研究结果为热胁迫下水稻籽粒外观品质的改良提供了良好的遗传资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rice
Rice AGRONOMY-
CiteScore
10.10
自引率
3.60%
发文量
60
审稿时长
>12 weeks
期刊介绍: Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信