In silico exploration of bioactive secondary metabolites with anesthetic effects on sodium channels Nav 1.7, 1.8, and 1.9 in painful human dental pulp.

IF 2.8 3区 医学 Q2 NEUROSCIENCES
Molecular Pain Pub Date : 2025-01-01 Epub Date: 2025-03-11 DOI:10.1177/17448069251327824
Ravinder S Saini, Rayan Ibrahim H Binduhayyim, Mohamed Saheer Kuruniyan, Artak Heboyan
{"title":"<i>In silico</i> exploration of bioactive secondary metabolites with anesthetic effects on sodium channels Nav 1.7, 1.8, and 1.9 in painful human dental pulp.","authors":"Ravinder S Saini, Rayan Ibrahim H Binduhayyim, Mohamed Saheer Kuruniyan, Artak Heboyan","doi":"10.1177/17448069251327824","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To investigate the efficacy of medicinal plant bioactive secondary metabolites as inhibitors of voltage-gated sodium channels (Nav1.7, Nav1.8, and Nav1.9) in managing painful states of dental pulps.</p><p><strong>Methodology: </strong>Molecular docking, ADME prediction, toxicity profiling, and pharmacophore modeling were used to assess the binding affinities, pharmacokinetic properties, toxicological profiles, and active pharmacophores of the selected bioactive compounds.</p><p><strong>Results: </strong>Three compounds (Sepaconitine, Lappaconitine, and Ranaconitine) showed binding affinities (ΔG = -8.95 kcal/mol, -7.77 kcal/mol, and -7.44 kcal/mol, respectively) with all three Nav1.7, Nav1.8, and Nav1.9 sodium channels. The sepaconitine amine group formed hydrophobic interactions with key residues. The Lappaconitine benzene ring contributed to hydrophobic interactions and hydrogen bond acceptor interactions. The hydrophobic interactions of the ranaconitine amine group play a critical role with specific residues on Nav1.8 and Nav1.9.</p><p><strong>Conclusion: </strong>The natural fusicoccane diterpenoid derivatives Sepaconitine, Lappaconitine, and Ranaconitine are potential lead compounds for the development of novel analgesics as selective antihyperalgesic drugs, which will provide a new dental pharmacological intervention for managing painful dental pulp conditions. Further experimental validation and clinical studies that confirm the efficacy and safety of these compounds will strengthen their applicability in dental practice.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251327824"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069251327824","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: To investigate the efficacy of medicinal plant bioactive secondary metabolites as inhibitors of voltage-gated sodium channels (Nav1.7, Nav1.8, and Nav1.9) in managing painful states of dental pulps.

Methodology: Molecular docking, ADME prediction, toxicity profiling, and pharmacophore modeling were used to assess the binding affinities, pharmacokinetic properties, toxicological profiles, and active pharmacophores of the selected bioactive compounds.

Results: Three compounds (Sepaconitine, Lappaconitine, and Ranaconitine) showed binding affinities (ΔG = -8.95 kcal/mol, -7.77 kcal/mol, and -7.44 kcal/mol, respectively) with all three Nav1.7, Nav1.8, and Nav1.9 sodium channels. The sepaconitine amine group formed hydrophobic interactions with key residues. The Lappaconitine benzene ring contributed to hydrophobic interactions and hydrogen bond acceptor interactions. The hydrophobic interactions of the ranaconitine amine group play a critical role with specific residues on Nav1.8 and Nav1.9.

Conclusion: The natural fusicoccane diterpenoid derivatives Sepaconitine, Lappaconitine, and Ranaconitine are potential lead compounds for the development of novel analgesics as selective antihyperalgesic drugs, which will provide a new dental pharmacological intervention for managing painful dental pulp conditions. Further experimental validation and clinical studies that confirm the efficacy and safety of these compounds will strengthen their applicability in dental practice.

EXPRESS:对疼痛人类牙髓中钠通道Nav 1.7、1.8和1.9具有麻醉作用的生物活性次生代谢物的计算机探索。
目的:探讨药用植物次生代谢物作为电压门控钠通道(Nav1.7、Nav1.8和Nav1.9)抑制剂对牙髓疼痛状态的影响。方法:采用分子对接、ADME预测、毒性谱和药效团模型来评估所选生物活性化合物的结合亲和力、药代动力学特性、毒理学谱和活性药效团。结果:三种化合物(分离乌头碱、高乌头碱和Ranaconitine)与Nav1.7、Nav1.8和Nav1.9三个钠通道均具有结合亲和性(ΔG = -8.95 kcal/mol、-7.77 kcal/mol和-7.44 kcal/mol)。分离碱胺基与关键残基形成疏水相互作用。高乌甲素苯环参与疏水相互作用和氢键受体相互作用。ranaconitine胺基的疏水相互作用对Nav1.8和Nav1.9上的特异性残基起关键作用。结论:天然双藤二萜类衍生物分离乌头碱、高乌头碱和拉乌头碱是开发新型镇痛药的先导化合物,可作为选择性抗痛症药物,为治疗牙髓疼痛提供新的药理干预手段。进一步的实验验证和临床研究证实了这些化合物的有效性和安全性,将加强它们在牙科实践中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pain
Molecular Pain 医学-神经科学
CiteScore
5.60
自引率
3.00%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信