In silico exploration of bioactive secondary metabolites with anesthetic effects on sodium channels Nav 1.7, 1.8, and 1.9 in painful human dental pulp.

IF 2.8 3区 医学 Q2 NEUROSCIENCES
Molecular Pain Pub Date : 2025-01-01 Epub Date: 2025-03-11 DOI:10.1177/17448069251327824
Ravinder S Saini, Rayan Ibrahim H Binduhayyim, Mohamed Saheer Kuruniyan, Artak Heboyan
{"title":"<i>In silico</i> exploration of bioactive secondary metabolites with anesthetic effects on sodium channels Nav 1.7, 1.8, and 1.9 in painful human dental pulp.","authors":"Ravinder S Saini, Rayan Ibrahim H Binduhayyim, Mohamed Saheer Kuruniyan, Artak Heboyan","doi":"10.1177/17448069251327824","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To investigate the efficacy of medicinal plant bioactive secondary metabolites as inhibitors of voltage-gated sodium channels (Nav1.7, Nav1.8, and Nav1.9) in managing painful states of dental pulps.</p><p><strong>Methodology: </strong>Molecular docking, ADME prediction, toxicity profiling, and pharmacophore modeling were used to assess the binding affinities, pharmacokinetic properties, toxicological profiles, and active pharmacophores of the selected bioactive compounds.</p><p><strong>Results: </strong>Three compounds (Sepaconitine, Lappaconitine, and Ranaconitine) showed binding affinities (ΔG = -8.95 kcal/mol, -7.77 kcal/mol, and -7.44 kcal/mol, respectively) with all three Nav1.7, Nav1.8, and Nav1.9 sodium channels. The sepaconitine amine group formed hydrophobic interactions with key residues. The Lappaconitine benzene ring contributed to hydrophobic interactions and hydrogen bond acceptor interactions. The hydrophobic interactions of the ranaconitine amine group play a critical role with specific residues on Nav1.8 and Nav1.9.</p><p><strong>Conclusion: </strong>The natural fusicoccane diterpenoid derivatives Sepaconitine, Lappaconitine, and Ranaconitine are potential lead compounds for the development of novel analgesics as selective antihyperalgesic drugs, which will provide a new dental pharmacological intervention for managing painful dental pulp conditions. Further experimental validation and clinical studies that confirm the efficacy and safety of these compounds will strengthen their applicability in dental practice.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069251327824"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938900/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069251327824","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: To investigate the efficacy of medicinal plant bioactive secondary metabolites as inhibitors of voltage-gated sodium channels (Nav1.7, Nav1.8, and Nav1.9) in managing painful states of dental pulps.

Methodology: Molecular docking, ADME prediction, toxicity profiling, and pharmacophore modeling were used to assess the binding affinities, pharmacokinetic properties, toxicological profiles, and active pharmacophores of the selected bioactive compounds.

Results: Three compounds (Sepaconitine, Lappaconitine, and Ranaconitine) showed binding affinities (ΔG = -8.95 kcal/mol, -7.77 kcal/mol, and -7.44 kcal/mol, respectively) with all three Nav1.7, Nav1.8, and Nav1.9 sodium channels. The sepaconitine amine group formed hydrophobic interactions with key residues. The Lappaconitine benzene ring contributed to hydrophobic interactions and hydrogen bond acceptor interactions. The hydrophobic interactions of the ranaconitine amine group play a critical role with specific residues on Nav1.8 and Nav1.9.

Conclusion: The natural fusicoccane diterpenoid derivatives Sepaconitine, Lappaconitine, and Ranaconitine are potential lead compounds for the development of novel analgesics as selective antihyperalgesic drugs, which will provide a new dental pharmacological intervention for managing painful dental pulp conditions. Further experimental validation and clinical studies that confirm the efficacy and safety of these compounds will strengthen their applicability in dental practice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pain
Molecular Pain 医学-神经科学
CiteScore
5.60
自引率
3.00%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信